[1]李少杰 苏康康 王震 谷剑 陈淑霞.钠-葡萄糖共转运蛋白2抑制剂对心律失常影响的研究进展[J].心血管病学进展,2023,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.014]
 LI S haojie,SU K angkang,WANG Z hen,et al.Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2023,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.014]
点击复制

钠-葡萄糖共转运蛋白2抑制剂对心律失常影响的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年3期
页码:
251
栏目:
综述
出版日期:
2023-03-25

文章信息/Info

Title:
Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiac Arrhythmias
作者:
李少杰1 苏康康 1 王震 2 谷剑 123 陈淑霞 123
(1.河北北方学院研究生院,河北 张家口 075000;2.河北医科大学研究生院,河北 石家庄050017;3.河北省人民医院心血管内科,河北 石家庄 050051)
Author(s):
LI S haojie1SU K angkang1WANG Z hen2GU J ian123CHEN S huxia123
(1. Graduate School of Hebei North College,Zhangjiakou 075000,Hebei,China; 2.Graduate School of Hebei Medical University,Shijiazhuang 050017,Hebei,China; 3.Department of Cardiovascular Medicine,Hebei Provincial People’s Hospital,Shijiazhuang 050051,Hebei,China)
关键词:
2型糖尿病心力衰竭心律失常钠-葡萄糖共转运蛋白2抑制剂
Keywords:
Diabetes mellitus type 2Heart failureArrhythmiaSodium-glucose cotransporter 2 inhibitor
DOI:
10.16806/j.cnki.issn.1004-3934.2023.03.014
摘要:
2型糖尿病与心力衰竭通常会相伴发生,可导致心律失常增加从而使患者预后更差。钠-葡萄糖共转运蛋白2抑制剂(SGLT2i)作为一种新型降糖药物,能降低糖尿病合并心力衰竭患者的心血管疾病死亡率和住院率。越来越多的证据表明SGLT2i有抗心律失常作用。现就SGLT2i对心律失常影响的临床证据以及可能的作用机制进行综述。
Abstract:
Diabetes mellitus type 2 and heart failure commonly occur together,which can lead to increased arrhythmias resulting in a poorer prognosis for patients. Sodium-glucose cotransport er 2(SGLT2i) ,as a new hypoglycaemic agent,has been shown to improve cardiovascular mortality and hospitalisations in patients with diabetes mellitus combined with heart failure. There is growing evidence that SGLT2i has anti-arrhythmic effects. This paper reviews the clinical evidence and possible mechanisms of SGLT2i on arrhythmias

参考文献/References:

[1] Zaccardi F,Khan H,Laukkanen JA. Diabetes mellitus and risk of sudden cardiac death: a systematic review and meta-analysis[J]. Int J Cardiol,2014,177(2):535-537.

[2] Saour B,Smith B,Yancy CW. Heart failure and sudden cardiac death[J]. Card Electrophysiol Clin, 2017,9(4):709-723.

[3] Zhang D,Tu H,Wadman MC,et al. Substrates and potential therapeutics of ventricular arrhythmias in heart failure[J]. Eur J Pharmacol,2018,833:349-356.

[4] Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus[J]. Indian Heart J,2018,70(6):915-921.

[5] Neal B,Perkovic V,Mahaffey KW,et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(7):644-657.

[6] Wanner C,Lachin JM,Inzucchi SE,et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus,established cardiovascular disease,and chronic kidney disease[J]. Circulation,2018,137(2):119-129.

[7] Wiviott SD,Raz I,Bonaca MP,et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med,2019,380(4):347-357.

[8] Zelniker TA,Bonaca MP,Furtado RHM,et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus:insights from the DECLARE-TIMI 58 trial[J]. Circulation,2020,141(15):1227-1234.

[9] Fernandes GC,Fernandes A,Cardoso R,et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure:a meta-analysis of 34 randomized controlled trials[J]. Heart Rhythm,2021,18(7):1098-1105.

[10] Lopaschuk GD,Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2(SGLT2) inhibitors:a state-of-the-art review[J]. JACC Basic Transl Sci,2020,5(6):632-644.

[11] Cosentino F,Grant PJ,Aboyans V,et al. 2019 ESC guidelines on diabetes,pre-diabetes,and cardiovascular diseases developed in collaboration with the EASD[J]. Eur Heart J,2020,41(2):255-323.

[12] Santangeli P,Rame JE,Birati EY,et al. Management of ventricular arrhythmias in?patients with advanced heart failure[J]. J Am Coll Cardiol,2017,69(14):1842-1860.

[13] Mene-Afejuku TO,Bamgboje AO,Ogunniyi MO,et al. Ventricular arrhythmias in seniors with heart failure:present dilemmas and therapeutic considerations:a systematic review[J]. Curr Cardiol Rev,2022,18(2):e181021197279.

[14] Tan NY,Roger VL,Killian JM,et al. Ventricular arrhythmias among patients with advanced heart failure:a population-based study[J]. J Am Heart Assoc,2022,11(1): e023377.

[15] Alvarez CK,Cronin E,Baker WL,et al. Heart failure as a substrate and trigger for ventricular tachycardia[J]. J Interv Card Electrophysiol,2019,56(3):229-247.

[16] Gallego M,Zayas-Arrabal J,Alquiza A,et al. Electrical features of the diabetic myocardium. Arrhythmic and cardiovascular safety considerations in diabetes[J]. Front Pharmacol,2021,12:687256.

[17] Zayas-Arrabal J,Alquiza A,Tuncay E,et al. Molecular and electrophysiological role of diabetes-associated circulating inflammatory factors in cardiac arrhythmia remodeling in a metabolic-induced model of type 2 diabetic rat[J]. Int J Mol Sci,2021,22(13):6827.

[18] Tse G,Lai ET,Tse V,et al. Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus[J]. J Diabetes Res,2016,2016:2848759.

[19] Zhang N,Wang Y,Tse G,et al. Effect of sodium-glucose cotransporter-2 inhibitors on cardiac remodelling:a systematic review and meta-analysis[J]. Eur J Prev Cardiol,2022,28(17):1961-1973.

[20] Masarone D,Limongelli G,Ammendola E,et al. Risk stratification of sudden cardiac death in patients with heart failure:an update[J]. J Clin Med,2018,7(11):436.

[21] Rao S. Use of sodium-glucose cotransporter-2 inhibitors in clinical practice for heart failure prevention and treatment:beyond type 2 diabetes. A narrative review[J]. Adv Ther,2022,39(2):845-861.

[22] Curtain JP,Docherty KF,Jhund PS,et al. Effect of dapagliflozin on ventricular arrhythmias,resuscitated cardiac arrest,or sudden death in DAPA-HF[J]. Eur Heart J,2021,42(36):3727-3738.

[23] Ilyas F,Jones L,Tee SL,et al. Acute pleiotropic effects of dapagliflozin in type 2 diabetic patients with heart failure with reduced ejection fraction:a crossover trial[J]. ESC Heart Fail,2021,8(5):4346-4352.

[24] Sfairopoulos D,Zhang N,Wang Y,et al. Association between sodium-glucose cotransporter-2 inhibitors and risk of sudden cardiac death or ventricular arrhythmias:a meta-analysis of randomized controlled trials[J]. Europace,2022,24(1):20-30.

[25] Fujiki S,Iijima K,Okabe M,et al. Placebo-controlled,double-blind study of empagliflozin(EMPA) and implantable cardioverter-defibrillator(EMPA-ICD) in patients with type?2 diabetes (T2DM):rationale and design[J]. Diabetes Ther,2020,11(11):2739-2755.

[26] Husti Z,Varró A,Baczkó I. Arrhythmogenic remodeling in the failing heart[J]. Cells,2021,10(11):3203.

[27] Almahameed ST,Ziv O. Ventricular arrhythmias[J]. Med Clin North Am,2019,103(5):881-895.

[28] Frangogiannis NG. Cardiac fibrosis[J]. Cardiovasc Res,2021,117(6):1450-1488.

[29] Linhart M,Doltra A,Acosta J,et al. Ventricular arrhythmia risk is associated with myocardial scar but not with response to cardiac resynchronization therapy[J]. Europace,2020,22(9):1391-1400.

[30] Zhang Y,Lin X,Chu Y,et al. Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensinⅡ-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J]. Cardiovasc Diabetol,2021,20(1):121.

[31] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left?ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.

[32] Pei J,Li N,Gao Y,et al. The J wave and fragmented QRS complexes in inferior leads associated with sudden cardiac death in patients with chronic heart failure[J]. Europace,2012,14(8):1180-1187.

[33] Schurr JW,Grewal PK,Fan R,et al. QT interval measurement in ventricular pacing:implications for assessment of drug effects and pro-arrhythmia risk[J]. J Electrocardiol,2022,70:13-18.

[34] Jhuo SJ,Liu IH,Tasi WC,et al. Characteristics of ventricular electrophysiological substrates in metabolic mice treated with empagliflozin[J]. Int J Mol Sci,2021,22(11):6105.

[35] ?zgür Bar?? V,Din?soy B,Gedikli E,et al. Empagliflozin significantly attenuates sotalol-induced QTc prolongation in rats[J]. Kardiol Pol,2021,79(1):53-57.

[36] Hanefeld M,Ganz X,Nolte C. Hypoglycemia and cardiac arrhythmia in patients with diabetes mellitus type 2[J]. Herz,2014,39(3):312-319.

[37] Manolis AA,Manolis TA,Melita H,et al. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias[J]. Trends Cardiovasc Med,2022. DOI : 10.1016/j.tcm.2022.04.003.

[38] Lin DJ,Lee WS,Chien YC,et al. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia[J]. Tzu Chi Med J,2021,33(4):323-331.

[39] Gazmuri RJ,Radhakrishnan J,Ayoub IM. Sodium-hydrogen exchanger isoform-1 inhibition:a promising pharmacological intervention for resuscitation from cardiac arrest[J]. Molecules,2019,24(9):1765.

[40] Mustroph J,Neef S,Maier LS. CaMKⅡas a target for arrhythmia suppression[J]. Pharmacol Ther,2017,176:22-31.

[41] Ye Y,Jia X,Bajaj M,et al. Dapagliflozin attenuates Na+/H+ exchanger-1 in cardiofibroblasts via AMPK activation[J]. Cardiovasc Drugs Ther,2018,32(6):553-558.

[42] Mustroph J,Wagemann O,Lücht CM,et al. Empagliflozin reduces Ca/calmodulin-dependent kinase Ⅱactivity in isolated ventricular cardiomyocytes[J]. ESC Heart Fail,2018,5(4):642-648.

[43] Horváth B,Hézs? T,Kiss D,et al. Late sodium current inhibitors as potential antiarrhythmic agents[J]. Front Pharmacol,2020,11:413.

[44] Lee TI,Chen YC,Lin YK,et al. Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats[J]. Int J Mol Sci,2019,20(7):1680.

[45] Philippaert K,Kalyaanamoorthy S,Fatehi M,et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin[J]. Circulation,2021,143(22):2188-2204.

[46] Jhuo SJ,Liu IH,Tsai WC,et al. Effects of secretome from fat tissues on ion currents of cardiomyocyte modulated by sodium-glucose transporter 2 inhibitor[J]. Molecules,2020,25(16):3606.

[47] Durak A,Olgar Y,Degirmenci S,et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol,2018,17(1):144.

[48] Ernault AC,Meijborg VMF,Coronel R. Modulation of cardiac arrhythmogenesis by epicardial adipose tissue:JACC?state-of-the-art?review[J]. J Am Coll Cardiol,2021,78(17):1730-1745.

[49] Park SH,Farooq MA,Gaertner S,et al. Empagliflozin improved systolic blood pressure,endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat[J]. Cardiovasc Diabetol,2020,19(1):19.

[50] Pham SV,Chilton R. EMPA-REG OUTCOME:the cardiologist’s point of?view[J]. Am J Med,2017,130(6S):S57-S62.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(3):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(3):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(3):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(3):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(3):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(3):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(3):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(3):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
 ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(3):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]

更新日期/Last Update: 2023-04-24