参考文献/References:
[1] Konkoth A ,Saraswat R ,Dubrou C ,et al. Multifaceted role of extracellular vesicles in atherosclerosis[J]. Atherosclerosis,2021,319:121-131.
[2] 浦冬青,刘政,周超,等. 近10年动脉粥样硬化发病机制研究热点的可视化分析[J]. 世界科学技术:中医药现代化,2021,23(7):2276-2284.
[3] Macia L,Nanan R,Hosseini-Beheshti E,et al. Host- and microbiota-derived extracellular vesicles,immune function,and disease development[J]. Int Mol Sci,2019,21(1):107.
[4] Jonsson A L,B?ckhed F. Role of gut microbiota in atherosclerosis[J]. Nat Rev Cardiol,2017,14(2):79-87.
[5] Peng M,Liu X,Xu G. Extracellular vesicles as messengers in atherosclerosis[J]. J Cardiovasc Transl Res,2020,13(2):121-130.
[6] Kalluri R,Lebleu VS. The biology ,function,and biomedical applications of exosomes[J]. Science,2020,367(6478):eaau6977.
[7] Bishop DG,W ork E . An extracellular glycolipid produced by escherichia coli grown under lysine-limiting conditions[J]. Biochem J,1965,96(2):567-576.
[8] Tulkens J,de Wever O,Hendrix A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization[J]. Nat Protoc,2020,15(1):40-67.
[9] Toyofuku M,Nomura N,Eberl L. Types and origins of bacterial membrane vesicles[J]. Nat Rev Microbiol,2019,17(1):13-24.
[10] Díaz-Garrido N,Badia J,Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut[J]. J Extracell Vesicles,2021,10(13):e12161.
[11] Chelakkot C,Choi Y,Kim DK,et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Exp Mol Med,2018,50(2):e450.
[12] Costa TR,Felisberto-Rodrigues C,Meir A,et al. Secretion systems in Gram-negative bacteria:structural and mechanistic insights[J]. Nat Rev Microbiol,2015,13(6):343-359.
[13] Huang W,Meng L,Chen Y,et al. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy[J]. Acta Biomater,2022,140:102-115.
[14] Wang Y,Hoffmann JP,Baker SM ,et al. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles[J]. BMC Microbiol,2021,21(1):234.
[15] Bittel M,Reichert P,Sarfati I ,et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo[J]. J Extracell Vesicles,2021,10(12):e12159.
[16] Noval Rivas M,Wakita D,Franklin MK ,et al. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation[J]. Immunity,2019,51(3):508-521.e6.
[17] Chakaroun RM,Massier L,Kovacs P . Gut microbiome,intestinal permeability,and tissue bacteria in metabolic disease:perpetrators or bystanders?[J]. Nutrients,2020,12(4):1082.
[18] Saad MJ,Santos A,Prada PO . Linking gut microbiota and inflammation to obesity and insulin resistance[J]. Physiology (Bethesda),2016,31(4):283-293.
[19] Ziganshina EE,Sharifullina DM,Lozhkin AP,et al. Bacterial communities associated with atherosclerotic plaques from Russian individuals with atherosclerosis[J]. PloS One,2016,11(10):e0164836.
[20] Li N,Liu SF,Dong K ,et al. Exosome-transmitted miR-25 induced by H.pylori promotes vascular endothelial cell injury by targeting KLF2[J] . Front Cell Infect Microbiol,2019,9:366.
[21] Xia X,Zhang L,Chi J,et al. Helicobacter pylori infection impairs endothelial function through an exosome-mediated mechanism[J]. J Am Heart Assoc,2020,9(6):e014120.
[22] Badi SA,Motahhary A,Bahramali G,et al. The regulation of Niemann-Pick C1-Like 1 (NPC1L1) gene expression in opposite direction byBacteroides spp. and related outer membrane vesicles in Caco-2 cell line[J]. J Diabetes Metab Disord,2020,19(1):415-422.
[23] 孙常青,郭丽蓉,乔伟桐,等. NPC1L1抑制剂对冠心病患者血管内皮功能的影响[J]. 中国卫生标准管理,2021,12(6):114-117.
[24] Díez-Sainz E,Milagro FI,Riezu-Boj JI ,et al. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet[J]. J Physiol Biochem,2022,78(2):485-499.
[25] Ashrafian F,Shahriary A,Behrouzi A ,et al.Akkermansia muciniphila—Derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice[J]. Front Microbiol,2019,10:2155.
[26] Moosavi SM,Akhavan Sepahi A,Mousavi SF ,et al. The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model[J]. J Diabetes Metab Disord,2020,19(2):1061-1069.
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(4):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(4):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(4):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(4):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(4):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[7]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(4):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[8]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(4):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[9]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(4):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[10]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(4):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]