[1]高先佈李昌金宋晓伟吴弘.线粒体转录因子A在心力衰竭的研究[J].心血管病学进展,2022,(10):919.[doi:10.16806/j.cnki.issn.1004-3934.2022..013]
 GAO Xianbu,LI Changjin,SONG Xiaowei,et al.Mitochondrial Transcription Factor A and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(10):919.[doi:10.16806/j.cnki.issn.1004-3934.2022..013]
点击复制

线粒体转录因子A在心力衰竭的研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
919
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Mitochondrial Transcription Factor A and Heart Failure
作者:
高先佈12李昌金1宋晓伟1吴弘1
(1.海军军医大学附属长海医院心内科上海 2004332.联勤保障部队第九六六医院心内科,辽宁 丹东 118000)
Author(s):
GAO Xianbu12LI Changjin1SONG Xiaowei1WU Hong1
(.Department of Cardiology,Changhai Hospital Affiliated to Naval Medical University,Shanghai 200433,China2. Department of Cardiology, 966 hospital, Joint Logistics Support Force, Chinese People’s Liberation Army, Dandong 118000, Liaoning, China)
关键词:
心力衰竭线粒体转录因子A活性氧钙离子
Keywords:
Heart failure Mitochondrial transcription factor A Reactive oxygen species Calcium ion
DOI:
10.16806/j.cnki.issn.1004-3934.2022..013
摘要:
线粒体对维持心肌细胞正常生理功能至关重要,越来越多的研究表明线粒体功能障碍是心力衰竭进展的关键因素之一。线粒体转录因子A通过转录与包裹线粒体DNA的方式来保护线粒体DNA的稳定性。现通过对线粒体转录因子A的分子生物学特性、线粒体及线粒体转录因子A在心力衰竭中的作用机制等方面进行综合阐述,进一步讨论提升心力衰竭细胞内线粒体转录因子A的方法,为其治疗心力衰竭提供新的思路。
Abstract:
Mitochondria are essential for maintaining the normal physiological function of cardiomyocytes, and more and more studies have shown that mitochondrial dysfunction is one of the key factors in the progression of heart failure. Mitochondrial transcription factor A protects the stability of mitochondrial DNA by transcribing and wrapping mitochondrial DNA. This paper aims to describe the molecular biological characteristics of mitochondrial transcription factor A, mitochondria and the mechanism of action of mitochondrial transcription factor A in heart failure and discuss the method of enhancing mitochondrial transcription factor A in heart failure cells, which provides new ideas for the treatment of heart failure

参考文献/References:

[1] 胡盛寿,高润霖,刘力生,等。《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.[2] McDonagh TA,Metra M,Adamo M,et al.2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J].Eur Heart J,2021,42(36):3599-3726.[3] Sharma P,Sampath H.Mitochondrial DNA integrity:role in health and disease[J].Cells,2019,8(2):100.[4] Kunkel GH,Chaturvedi P,Tyagi SC.Mitochondrial pathways to cardiac recovery:TFAM[J].Heart Fail Rev,2016,21(5):499-517.[5] Chew K,Zhao L.Interactions of mitochondrial transcription factor A with DNA damage:mechanistic insights and functional implications[J].Genes (Basel),2021,12(8):1246[6] Koh JH,Kim YW,Seo DY,et al.Mitochondrial TFAM as a signaling regulator between cellular organelles:a perspective on metabolic diseases[J].Diabetes Metab J,2021,45(6):853-865.[7] Zhou B,Tian R.Mitochondrial dysfunction in pathophysiology of heart failure[J].J Clin Invest,2018,128(9):3716-3726.[8] van der Pol A,van Gilst WH,Voors AA,et al.Treating oxidative stress in heart failure:past,present and future[J].Eur J Heart Fail,2019,21(4):425-435.[9] Quan Y,Xin Y,Tian G,et al.Mitochondrial ROS-modulated mtDNA:a potential target for cardiac aging[J].Oxid Med Cell Longev,2020,2020:9423593.[10] Santulli G,Xie W,Reiken SR,et al.Mitochondrial calcium overload is a key determinant in heart failure[J].Proc Natl Acad Sci U S A,2015,112(36):11389-11394.[11] Liu J,Zhao Y,Zhu Y,et al.Rhynchophylline regulates calcium homeostasis by antagonizing ryanodine receptor 2 phosphorylation to improve diabetic cardiomyopathy[J].Front Pharmacol,2022,13:882198.[12] Garbincius J,Luongo T,Jadiya P,et al.Enhanced NCLX-dependent mitochondrial Ca efflux attenuates pathological remodeling in heart failure[J].J Mol Cell Cardiol,2022,167:52-66.[13] Cheriyan A,Ume A,Francis C,et al.Calcineurin A-α suppression drives nuclear factor-κB-mediated NADPH oxidase-2 upregulation[J].Am J Physiol Renal Physiol,2021,320(5):789-798.[14] Chaklader M,Rothermel BA.Calcineurin in the heart:new horizons for an old friend[J].Cell Signal,2021,87:110134.[15] Cabral-Pacheco GA,Garza-Veloz I,Castruita-De la Rosa C,et al.The roles of matrix metalloproteinases and their inhibitors in human diseases[J].Int J Mol Sci,2020,21(24):9739.[16] Zhang M,Wang G,Peng T.Calpain-mediated mitochondrial damage:an emerging mechanism contributing to cardiac disease[J].Cells,2021,10(8):2024.[17] Kunkel GH,Kunkel CJ,Ozuna H,et al.TFAM overexpression reduces pathological cardiac remodeling[J].Mol Cell Biochem,2019,454(1-2):139-152.[18] Zhihao L,Jingyu N,Lan L,et al.SERCA2a:a key protein in the Ca(2+) cycle of the heart failure[J].Heart Fail Rev,2020,25(3):523-535.[19] Aluja D,Delgado-Tomas S,Ruiz-Meana M,et al.Calpains as potential therapeutic targets for myocardial hypertrophy[J].Int J Mol Sci,2022,23(8):4103.[20] Williams R,Johnson C.A review of calcineurin biophysics with implications for cardiac physiology[J].Int J Mol Sci,2021,22(21):11565.[21] Lin J,Chen Z,Yang L,et al.Cas9/AAV9-mediated somatic mutagenesis uncovered the cell-autonomous role of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 in murine cardiomyocyte maturation[J].Front Cell Dev Biol,2022,10:864516.[22] Watanabe A,Arai M,Koitabashi N,et al.Mitochondrial transcription factors TFAM and TFB2M regulate Serca2 gene transcription[J].Cardiovasc Res,2011,90(1):57-67.[23] Yang J,Chen W,Zhang B,et al.Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis[J].Arch Toxicol,2018,92(6):1913-1923.[24] Matsushima Y,Goto Y,Kaguni L.Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM)[J].Proc Natl Acad Sci U S A,2010,107(43):18410-18415.[25] Lan L,Guo M,Ai Y,et al.Tetramethylpyrazine blocks TFAM degradation and up-regulates mitochondrial DNA copy number by interacting with TFAM[J].Bioscience reports,2017,37(3):BSR20170319.[26] Kao T,Chiu Y,Fang W,et al.Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex[J].Cell Death Dis,2015,6(2):e1642.[27] Li Y,Jiao Y,Liu Y,et al.PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication[J].J Cell Mol Med,2022,26(3):593-600.[28] Zhu Z,Li H,Chen W,et al.Perindopril improves cardiac function by enhancing the expression of SIRT3 and PGC-1α in a rat model of isoproterenol-induced cardiomyopathy[J].Front Pharmacol,2020,11:94.[29] Yao K,Zhang WW,Yao L,et al.Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs)[J].Biochem Biophys Res Commun,2016,470(4):961-966.[30] Hou N,Huang Y,Cai SA,et al.Puerarin ameliorated pressure overload-induced cardiac hypertrophy in ovariectomized rats through activation of the PPARalpha/PGC-1 pathway[J].Acta Pharmacol Sin,2021,42(1):55-67.[31] He H,Li C,Lu X,et al.RNA-Seq profiling to investigate the mechanism of qishen granules on regulating mitochondrial energy metabolism of heart failure in rats[J].Evid Based Complement Alternat Med,2021,2021:5779307.[32] Qui?nes-Lombra? A,Blanco J.Chromosome 21-derived hsa-miR-155-5p regulates mitochondrial biogenesis by targeting Mitochondrial Transcription Factor A (TFAM)[J].Biochim Biophys Acta,2015,1852(7):1420-1427.[33] Wu K,Ma J,Zhan Y,et al.Down-regulation of microRNA-214 contributed to the enhanced mitochondrial transcription factor a and inhibited proliferation of colorectal cancer cells[J].Cell Physiol Biochem,2018,49(2):545-554.[34] Zuo Y,Qu C,Tian Y,et al.The HIF-1/SNHG1/miR-199a-3p/TFAM axis explains tumor angiogenesis and metastasis under hypoxic conditions in breast cancer[J].Biofactors,2021,47(3):444-460.[35] Peng H,Guo T,Chen Z,et al.Hypermethylation of mitochondrial transcription factor A induced by cigarette smoke is associated with chronic obstructive pulmonary disease[J].Exp Lung Res,2019,45:101-111.[36] Behera J,Ison J,Voor M,et al.Probiotics stimulate bone formation in obese mice via histone methylations[J].Theranostics,2021,11(17):8605-8623.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(10):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(10):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(10):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(10):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(10):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(10):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(10):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(10):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(10):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(10):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2022-12-26