参考文献/References:
[1].Huart J,Leenders J,Taminiau B,et al. Gut microbiota and fecal levels of short-chain fatty acids diffffer upon 24-hour blood pressure levels in men[J]. Hypertension,2019,74(4):1005-1013.
[2].Liu H,Chen X,Hu X,et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome,2019,7(1):68.
[3].Cui X,Ye L,Li J,et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients[J]. Sci Rep,2018,8(1):635.
[4].Tang TWH,Chen HC,Chen CY,et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation,2019,139(5):647-659.
[5].Du Y,Li X,Su C,et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-defificiency mice[J]. Br J Pharmacol,2020,177(8):1754-1772.
[6].Wang SZ,Yu YJ,Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis[J]. Microorganisms,2020,8(4):527.
[7].Khursheed R,Singh SK,Wadhwa S,et al. Treatment strategies against diabetes:success so far and challenges ahead[J]. Eur J Pharmacol,2019,862:172625.
[8].Zuo K,Yin X,Li K,et al. Different types of atrial fibrillation share patterns of gut microbiota dysbiosis[J]. mSphere,2020,5(2):e00071-20.
[9].Wang Z,Klipfell E,Bennett BJ,et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature,2011,472(7341):57-63.
[10].Kang JX,Leaf A. Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes[J]. Eur J Pharmacol,1996,297(1-2):97-106.
[11].Zuo K,Li J,Li K,et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation[J]. Gigascience,2019,8(6):giz058.
[12].Machiels K,Sabino J,Vandermosten L,et al. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC[J]. Gut,2017,66(1):79-88.
[13].Hoffmann TW,Pham HP,Bridonneau C,et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice[J]. ISME J,2016,10(2):460-477.
[14].Zheng JX,Wu Y,Lin ZW,et al. Characteristics of and virulence factors associated with biofilm formation in clinical Enterococcus faecalis isolates in China[J]. Front Microbiol ,2017,8:2338.
[15].Riviere A,Gagnon M,Weckx S,et al. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides[J]. Appl Environ Microbiol,2015,81(22):7767-7781.
[16].Matson V,Fessler J,Bao R,et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science,2018,359(6371):104-108.
[17].Nagai F,Morotomi M,Watanabe Y,et al. Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces[J]. Int J Syst Evol Microbiol,2010,60(Pt 6):1296-1302.
[18].Kharbanda RK,van der Does WFB,van Staveren LN,et al. Vagus nerve stimulation and atrial fibrillation:revealing the paradox[J]. Neuromodulation,2022,25(3):356-365.
[19].Yu L,Meng G,Huang B,et al. A potential relationship between gut microbes and atrial fibrillation:trimethylamine N-oxide,a gut microbe-derived metabolite,facilitates the progression of atrial fibrillation[J]. Int J Cardiol,2018,255:92-98.
[20].Linz D,Gawako M,Sanders P,et al. Does gut microbiota affect atrial rhythm? Causalities and speculations[J]. Eur Heart J,2021,42(35):3521-3525.
[21].Zuo K,Zhang J,Fang C,et al. Metagenomic data-analysis reveals enrichment of lipopolysaccharide synthesis in the gut microbiota of atrial fibrillation patients[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2022,50(3):249-256.
[22].Yoshida N,Yamashita T,Kishino S,et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases[J]. Sci Rep,2020,10(1):13009.
[23].Zhang Y,Zhang S,Li B,et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res,2022,118(3):785-797.
[24].Hu HJ,Wang XH,Liu Y,et al. Hydrogen sulfide ameliorates angiotensinⅡ-induced atrial fibrosis progression to atrial fibrillation through inhibition of the Warburg effect and endoplasmic reticulum stress[J]. Front Pharmacol,2021,12:690371.
[25].Gao H,Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease[J]. Life Sci,2017,185:23-29.
[26]. Aronov PA,Luo FJ,Plummer NS,et al. Colonic contribution to uremic solutes[J]. J Am Soc Nephrol,2011,22(9):1769-1776.
[27].Koike H,Morita T,Tatebe J,et al. The difference in the changes of indoxyl sulfate after catheter ablation among atrial fibrillation patients with and without kidney dysfunction[J]. Sci Rep,2020,10(1):513.
[28].Chen WT,Chen YC,Hsieh MH,et al. The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J]. J Cardiovasc Electrophysiol,2015,26(2):203-210.
[29].Mishima RS,Elliott AD,Sanders P,et al. Microbiome and atrial fibrillation[J]. Int J Cardiol,2018,255:103-104.
[30].Bhar-Amato J,Davies W,Agarwal S. Ventricular arrhythmia after acute myocardial infarction:‘the perfect storm’[J]. Arrhythm Electrophysiol Rev,2017,6(3):134-139.
[31]. Bravo JA,Forsythe P,Chew MV,et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci U S A,2011,108(38):16050-16055.
[32].Goehler LE,Park SM,Opitz N,et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard:possible anatomical substrates for viscerosensory modulation of exploratory behavior[J]. Brain Behav Immun,2008,22(3):354-366.
[33].Perez-Burgos A,Wang B,Mao YK,et al. Psychoactive bacteria Lactobacillus rhamnosus(JB-1) elicits rapid frequency facilitation in vagal afferents[J]. Am J Physiol Gastrointest Liver Physiol,2013,304(2):G211-G220.
[34].Qi L,Hu H,Wang Y,et al. New insights into the central sympathetic hyperactivity post-myocardial infarction:roles of METTL3-mediated m6A methylation[J]. J Cell Mol Med,2022,26(4):1264-1280.
[35].Meng G,Zhou X,Wang M,et al. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways[J]. EBioMedicine,2019,44:656-664.
[36].Oliveras T,Lázaro I,Rueda F,et al. Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation[J]. Sci Rep,2022,12(1):4377.
[37].Jiang X,Yang F,Ou D,et al. MCC950 ameliorates ventricular arrhythmia vulnerability induced by heart failure[J]. Bioengineered,2022,13(4):8593-8604.
[38].Hawks MK,Paul MLB,Malu OO. Sinus node dysfunction[J]. Am Fam Physician,2021,104(2):179-185.
[39].Derouiche F,B?le-Feysot C,Na?mi D,et al. Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta[J]. Biochem Biophys Res Commun,2014,452(3):740-745.
[40].Ganguly P,Alam SF. Role of homocysteine in the development of cardiovascular disease[J]. Nutr J,2015,14:6.
[41].Soni CV,Tyagi SC,Todnem ND,et al. Hyperhomocysteinemia alters sinoatrial and atrioventricular nodal function:role of magnesium in attenuating these effects[J]. Cell Biochem Biophys,2016,74(1):59-65.
[42].Laha A,Majumder A,Singh M,et al. Connecting homocysteine and obesity through pyroptosis,gut microbiome,epigenetics,peroxisome proliferator-activated receptor γ,and zinc finger protein 407[J]. Can J Physiol Pharmacol,2018,96(10):971-976.
[43].Jin M,Qian Z,Yin J,et al. The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med,2019,23(4):2343-2350.
[44].Kim TT,Parajuli N,Sung MM,et al. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice[J]. Am J Physiol Endocrinol Metab,2018,315(4):E511-E519.
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(11):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(11):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(11):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(11):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(11):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[7]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(11):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[8]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(11):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[9]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(11):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
[10]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(11):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]