[1]陈乾 秦铭 徐志云.单核/巨噬细胞与主动脉瓣钙化研究进展[J].心血管病学进展,2022,(10):898.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.008]
 CHEN Qian,QIN Ming,XU Zhiyun.Aortic Valve Calcification Caused by Mononuclear Phagocyte System[J].Advances in Cardiovascular Diseases,2022,(10):898.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.008]
点击复制

单核/巨噬细胞与主动脉瓣钙化研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
898
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Aortic Valve Calcification Caused by Mononuclear Phagocyte System
作者:
陈乾12 秦铭12 徐志云2
(1.中国人民解放军海军军医大学基础医学院,上海 200433;2.海军军医大学长海医院心血管外科,上海 200433)
Author(s):
CHEN Qian12 QIN Ming 12 XU Zhiyun 2
(1. College of Basic Medical Sciences,The People’s Liberation Army Naval Medical University,Shanghai 200433,China;2. Department of Cardiac Surgery,Changhai Hospital,Naval Medical University,Shanghai 200433,China)
关键词:
单核细胞巨噬细胞主动脉瓣钙化性主动脉瓣膜病炎症
Keywords:
Monocyte Macrophage Aortic valve Calcified aortic valvular disease Inflammation
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.008
摘要:
主动脉瓣钙化是一种由多种因素共同参与的与年龄相关的复杂病理性改变,晚期可致主动脉瓣狭窄,严重影响患者生活质量。炎症被认为是导致主动脉瓣钙化的因素之一。单核细胞的浸润与巨噬细胞的极化是主动脉瓣膜炎症发生发展的重要机制。活化的巨噬细胞产生肿瘤坏死因子-α、白介素-1β等细胞因子,并通过分泌基质降解酶重塑细胞外基质加速瓣膜钙化。巨噬细胞也可以通过吸收脂质分化为泡沫细胞参与钙化进程。此外,单核细胞与其他免疫细胞的相互作用也对主动脉瓣钙化具有一定的影响。现通过查阅相关文献,就单核/巨噬细胞与主动脉瓣钙化发生发展的相关机制做一综述。
Abstract:
Aortic valve calcification is an age-related complicated pathological process involving multiple factors, and may result in valve stenosis in the late stage and decrease the life quality of patients. Inflammation is considered as one of the factors which may lead to aortic valve calcification. The infiltration of monocytes and the polarization of macrophages are important mechanisms for the occurrence and development of aortic valve inflammation. Activated macrophages produce cytokines such as tumor necrosis factor-α and interleukin-1β,and reshape extracellular matrix by secreting matrix degradation enzymes to accelerate valve calcification. Macrophage also differentiate into foam cells by absorbing lipids to participate in the calcification process. In addition, differentiation of monocytes into other immune cells also contribute a certain effect on aortic valve calcification. Our review summarizes the related mechanisms of monocytes and macrophages involving in the occurrence and development of aortic valve calcification.

参考文献/References:

[1] Taghavie-Moghadam PL,Butcher MJ,Galkina EV. The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis[J]. Ann N Y Acad Sci,2014,1319(1):19-37.

[2] Liu FY,Bai P,Jiang YF,et al. Role of interleukin 17A in aortic valve inflammation in apolipoprotein E-deficient mice[J]. Curr Med Sci,2020,40(4):729-738.

[3] Raddatz MA,Madhur MS,Merryman WD. Adaptive immune cells in calcific aortic valve disease[J]. Am J Physiol Heart Circ Physiol,2019,317(1):H141-H155.

[4] Hulin A,Anstine LJ,Kim AJ,et al. Macrophage transitions in heart valve development and myxomatous valve disease[J]. Arterioscler Thromb Vasc Biol,2018,38(3):636-644.

[5] Oba E,Aung NY,Ohe R,et al. The distribution of macrophage subtypes and their relationship to bone morphogenetic protein 2 in calcified aortic valve stenosis[J]. Am J Transl Res,2020,12(5):1728-1740.

[6] Tugal D,Liao X,Jain MK. Transcriptional control of macrophage polarization[J]. Arterioscler Thromb Vasc Biol,2013,33(6):1135-1144.

[7] Shapouri-Moghaddam A,Mohammadian S,Vazini H,et al. Macrophage plasticity,polarization,and function in health and disease[J]. J Cell Physiol,2018,233(9):6425-6440.

[8] Jinnouchi H,Guo L,Sakamoto A,et al. Diversity of macrophage phenotypes and responses in atherosclerosis[J]. Cell Mol Life Sci,2020,77(10):1919-1932.

[9] New SE,Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification[J]. Circ Res,2011,108(11):1381-1391.

[10] Lee SH,Choi JH. Involvement of immune cell network in aortic valve stenosis: communication between valvular interstitial cells and immune cells[J]. Immune Netw ,2016,16(1):26-32.

[11] Wang D,Xiong T,Yu W,et al. Predicting the key genes involved in aortic valve calcification through integrated bioinformatics analysis[J]. Front Genet,2021,12:650213.

[12] Schwartzenberg S,Meledin V,Zilberman L,et al. Low circulating monocyte count is associated with severe aortic valve stenosis[J]. Isr Med Assoc J,2013,15(9):500-504.

[13] Hewing B,Au SC,Ludwig A,et al. Severe aortic valve stenosis in adults is associated with increased levels of circulating intermediate monocytes[J]. J Cardiovasc Transl Res,2017,10(1):27-34.

[14] Michelena HI,Desjardins VA,Avierinos JF,et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community[J]. Circulation,2008,117(21):2776-2784.

[15] Moreno PR,Astudillo L,Elmariah S,et al. Increased macrophage infiltration and neovascularization in congenital bicuspid aortic valve stenosis[J]. J Thorac Cardiovasc Surg,2011,142(4):895-901.

[16] Wang R,Chen W,Ma Z,et al. M1/M2 macrophages and associated mechanisms in congenital bicuspid aortic valve stenosis[J]. Exp Ther Med,2014,7(4):935-940.

[17] Akahori H,Tsujino T,Naito Y,et al. Intraleaflet haemorrhage as a mechanism of rapid progression of stenosis in bicuspid aortic valve[J]. Int J Cardiol,2013,167(2):514-518.

[18] Conte M,Petraglia L,Campana P,et al. The role of inflammation and metabolic risk factors in the pathogenesis of calcific aortic valve stenosis[J]. Aging Clin Exp Res,2021,33(7):1765-1770.

[19] Li G,Qiao W,Zhang W,et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification[J]. J Thorac Cardiovasc Surg,2017,153(6):1318-1327.e1.

[20] Zhang P,The E,Nedumaran B,et al. Monocytes enhance the inflammatory response to TLR2 stimulation in aortic valve interstitial cells through paracrine up-regulation of TLR2 level[J]. Int J Biol Sci,2020,16(15):3062-3074.

[21] Yu Z,Seya K,Daitoku K,et al. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway[J]. J Pharmacol Exp Ther,2011,337(1):16-23.

[22] El Husseini D,Boulanger MC,Mahmut A,et al. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease[J]. J Mol Cell Cardiol,2014,72:146-156.

[23] Grim JC,Aguado BA,Vogt BJ,et al. Secreted factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells[J]. Arterioscler Thromb Vasc Biol,2020,40(11):e296-e308.

[24] Zhou J,Zhu J,Jiang L,et al. Interleukin 18 promotes myofibroblast activation of valvular interstitial cells[J]. Int J Cardiol,2016,221:998-1003.

[25] Xu R,Zhu D,Guo J,et al. IL-18 promotes erythrophagocytosis and erythrocyte degradation by M1 macrophages in a calcific microenvironment[J]. Can J Cardiol,2021,37(9):1460-1471.

[26] Eid RE,Rao DA,Zhou J,et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells[J]. Circulation,2009,119(10):1424-1432.

[27] Zhou P,Li Q,Su S,et al. Interleukin 37 suppresses M1 macrophage polarization through inhibition of the notch1 and nuclear factor kappa B pathways[J]. Front Cell Dev Biol,2020,8:56.

[28] Zeng Q,Song R,Fullerton DA,et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice[J]. Proc Natl Acad Sci U S A,2017,114(7):1631-1636.

[29] Karadimou G,Plunde O,Pawelzik SC,et al. TLR7 expression is associated with M2 macrophage subset in calcific aortic valve stenosis[J]. Cells,2020,9(7):1710.

[30] Li XF,Wang Y,Zheng DD,et al. M1 macrophages promote aortic valve calcification mediated by microRNA-214/TWIST1 pathway in valvular interstitial cells[J]. Am J Transl Res,2016,8(12):5773-5783.

[31] Aikawa E,Aikawa M,Libby P,et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease[J]. Circulation,2009,119(13):1785-1794.

[32] Joghetaei N ,Akhyari P,Rauch BH,et al. Extracellular matrix metalloproteinase inducer (CD147) and membrane type 1-matrix metalloproteinase are expressed on tissue macrophages in calcific aortic stenosis and induce transmigration in an artificial valve model[J]. J Thorac Cardiovasc Surg,2011,142(1):191-198.

[33] Song R,Ao L,Zhao KS,et al. Soluble biglycan induces the production of ICAM-1 and MCP-1 in human aortic valve interstitial cells through TLR2/4 and the ERK1/2 pathway[J]. Inflamm Res,2014,63(9):703-710.

[34] Kaden JJ,Dempfle CE,Grobholz R,et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis[J]. Cardiovasc Pathol,2005,14(2):80-87.

[35] Raddatz MA,Huffstater T,Bersi MR,et al. Macrophages promote aortic valve cell calcification and alter STAT3 splicing[J]. Arterioscler Thromb Vasc Biol,2020,40(6):e153-e165.

[36] Ziros PG,Georgakopoulos T,Habeos I,et al. Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3beta[J]. J Bone Miner Res,2004,19(11):1892-1904.

[37] Mohty D,Pibarot P,Després JP,et al. Association between plasma LDL particle size,valvular accumulation of oxidized LDL,and inflammation in patients with aortic stenosis[J]. Arterioscler Thromb Vasc Biol,2008,28(1):187-193.

[38] Youssef A,Clark JR,Koschinsky ML,et al. Lipoprotein(a):expanding our knowledge of aortic valve narrowing[J]. Trends Cardiovasc Med,2021,31(5):305-311.

[39] Bartoli-Leonard F,Zimmer J,Aikawa E.Innate and adaptive immunity:the understudied driving force of heart valve disease[J]. Cardiovasc Res,2021,117(13):2506-2524.

[40] Zhou Z,Li X,Li J,et al. Direct B-cell stimulation by peripheral blood monocyte-derived dendritic cells in idiopathic thrombocytopenic purpura patients[J]. J Clin Immunol,2010,30(6):814-822.

[41] Calin MV,Manduteanu I,Dragomir E,et al. Effect of depletion of monocytes/macrophages on early aortic valve lesion in experimental hyperlipidemia[J]. Cell Tissue Res,2009,336(2):237-248.

相似文献/References:

[1]张伟 黄从新.巨噬细胞与心血管稳态和疾病[J].心血管病学进展,2019,(9):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
 ZHANG Wei,HUANG Congxin.Macrophages are Associated with Cardiovascular Homeostasis and Diseases[J].Advances in Cardiovascular Diseases,2019,(10):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
[2]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
 LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(10):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[3]陈远洋 王志维.供体巨噬细胞在心脏移植中的研究进展[J].心血管病学进展,2022,(6):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
 CHEN Yuanyang,WANG Zhiwei.Donor Macrophages in Heart Transplantation[J].Advances in Cardiovascular Diseases,2022,(10):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
[4]付韫韬 赵庆彦?/html>.巨噬细胞调控离子通道致心律失常研究的最新进展[J].心血管病学进展,2022,(2):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
 FU Yuntao ZHAO Qingyan.Macrophages Regulating Ion Channels to Induce Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(10):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
[5]王朝阳 赵丽娜 田师鹏 陈淑霞 谷剑.炎症治疗在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
 WANG Zhaoyang,ZHAO Lina,TIAN Shipeng,et al.Advances in the Treatment of Inflammation in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(10):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
[6]黄爱宝??少衡.巨噬细胞治疗缺血心肌的研究进展[J].心血管病学进展,2024,(6):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]
 HUANG Aibao,ZHANG Shaoheng?/html>.Research progress in Macrophage Therapy for?schemic Myocardium[J].Advances in Cardiovascular Diseases,2024,(10):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]

更新日期/Last Update: 2022-12-26