[1]邵敬津 刘佳 潘莹 罗玉梅.基于药物载体的心肌梗死治疗进展[J].心血管病学进展,2022,(10):902.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.009]
 SHAO JingjinLIU JiaPAN YingLUO Yumei.Drug Carriers in the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(10):902.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.009]
点击复制

基于药物载体的心肌梗死治疗进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
902
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Drug Carriers in the Treatment of Myocardial Infarction
作者:
邵敬津1 刘佳2 潘莹2 罗玉梅12
(1.广东医科大学,广东 湛江 524000;2.深圳市龙岗区人民医院,广东 深圳 518172)
Author(s):
SHAO Jingjin1LIU Jia2PAN Ying2LUO Yumei12
(1.Guangdong Medical University, Zhanjiang 524000,Guangdong,China; 2.Longgang People’s Hospital,Shenzhen 518172,Guangdong,China)
关键词:
心肌梗死药物载体血管生成因子
Keywords:
Myocardial infarction Drug carrier Angiogenic factor
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.009
摘要:
心肌梗死作为全球主要死因之一,是由冠状动脉闭塞引起所供应的心肌严重而持久缺血死亡所致。药物载体具有良好的生物相容性、机械力性、导电性和化学性能,是一种安全有效的药物递送系统,在心肌梗死治疗上有潜在价值,现综述药物载体在心肌梗死治疗方面的研究进展。
Abstract:
Myocardial infarction,as one of the leading causes of death worldwide,is caused by severe and persistent ischemia of the supplying myocardium caused by coronary occlusion. The drug carrier has good biocompatibility,mechanical properties,electrical conductivity and chemical properties. It is a safe and effective drug delivery system and has potential value in the treatment of myocardial infarction. This paper reviews the research progress of drug carriers in the treatment of myocardial infarction

参考文献/References:

[1] van de Wouw J,Sorop O,van Drie R WA,et al. Perturbations in myocardial perfusion and oxygen balance in swine with multiple risk factors:a novel model of ischemia and no obstructive coronary artery disease[J]. Basic Res Cardiol,2020,115(2):21.

[2] van Rooij E. Cardiac repair after myocardial infarction[J]. N Engl J Med,2016,374(1):85-87.

[3] Nakada Y,Canseco DC,Thet S,et al. Hypoxia induces heart regeneration in adult mice[J]. Nature,2017,541(7636):222-227.

[4] Bergmann O,Bhardwaj RD,Bernard S,et al. Evidence for cardiomyocyte renewal in humans[J]. Science,2009,324(5923):98-102.

[5] Awada HK,Johnson NR,Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction[J]. J Control Release,2015,207:7-17.

[6] Rodness J,Mihic A,Miyagi Y,et al. VEGF-loaded microsphere patch for local protein delivery to the ischemic heart[J]. Acta Biomater,2016,45:169-181.

[7] Rufaihah AJ,Johari NA,Vaibavi SR,et al. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel[J]. Acta Biomater,2017,48:58-67.

[8] Rodell CB,Lee ME,Wang H,et al. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling[J]. Circ Cardiovasc Interv,2016,9(10):e004058.

[9] Hasan A,Khattab A,Islam MA,et al. Injectable hydrogels for cardiac tissue repair after myocardial infarction[J]. Adv Sci (Weinh),2015,2(11):1500122.

[10] Sitohy B,Chang S,Sciuto T E,et al. Early actions of anti-vascular endothelial growth factor/vascular endothelial growth factor receptor drugs on angiogenic blood vessels[J]. Am J Pathol,2017,187(10):2337-2347.

[11] Westenbrink BD,Lipsic E,van der Meer P,et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization[J]. Eur Heart J,2007,28(16):2018-2027.

[12] Li Z,Qu T,Ding C,et al. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis[J]. Acta Biomater,2015,13:88-100.

[13] Zhu H,Jiang X,Li X,et al. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction[J]. Heart Vessels,2016,31(6):963-975.

[14] Taimeh Z,Loughran J,Birks EJ,et al. Vascular endothelial growth factor in heart failure[J]. Nat Rev Cardiol,2013,10(9):519-530.

[15] Fan Z,Xu Z,Niu H,et al. Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction[J]. J Control Release,2019,311-312:233-244.

[16] Formiga FR,Tamayo E,Simón-yarza T,et al. Angiogenic therapy for cardiac repair based on protein delivery systems[J]. Heart Fail Rev,2012,17(3):449-473.

[17] Losordo DW,Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I:angiogenic cytokines[J]. Circulation,2004,109(21):2487-2491.

[18] Kano MR,Morishita Y,Iwata C,et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling[J]. J Cell Sci,2005,118(Pt 16):3759-3768.

[19] Kostas M,Lampart A,Bober J,et al. Translocation of exogenous FGF1 and FGF2 protects the cell against apoptosis independently of receptor activation[J]. J Mol Biol,2018,430(21):4087-4101.

[20] Shao ZQ,Takaji K,Katayama Y,et al. Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model[J]. Circ J,2006,70(4):471-477.

[21] Ziegler M,Elvers M,Baumer Y,et al. The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice[J]. Circulation,2012,125(5):685-696.

[22] Nakagawa P,Romero CA,Jiang X,et al. Ac-SDKP decreases mortality and cardiac rupture after acute myocardial infarction[J]. PLoS One,2018,13(1):e0190300.

[23] Song M,Jang H,Lee J,et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP[J]. Biomaterials,2014,35(8):2436-2445.

[24] Quadros HC,Santos LMF,Meira CS,et al. Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis[J]. Int J Pharm,2020,576:118997.

[25] Qi Q,Lu L,Li H,et al. Spatiotemporal delivery of nanoformulated liraglutide for cardiac regeneration after myocardial infarction[J]. Int J Nanomedicine,2017,12:4835-4848.

[26] Oduk Y,Zhu W,Kannappan R,et al. VEGF nanoparticles repair the heart after myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2018,314(2):278-284.

[27] Chang MY,Yang YJ,Chang CH,et al. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction[J]. J Control Release,2013,170(2):287-294.

[28] Viola HM,Jordan MC,Roos KP,et al. Decreased myocardial injury and improved contractility after administration of a peptide derived against the alpha-interacting domain of the L-type calcium channel[J]. J Am Heart Assoc,2014,3(3):e000961.

[29] Hardy N,Viola HM,Johnstone VP,et al. Nanoparticle-mediated dual delivery of an antioxidant and a peptide against the L-Type Ca2+ channel enables simultaneous reduction of cardiac ischemia-reperfusion injury [J]. ACS Nano,2015,9(1):279-289.

[30] Segers VF,Tokunou T,Higgins LJ,et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction[J]. Circulation,2007,116(15):1683-1692.

[31] Hsieh PC,Macgillivray C,Gannon J,et al. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity[J]. Circulation,2006,114(7):637-644.

[32] Hsieh PC,Davis ME,Gannon J,et al. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers[J]. J Clin Invest,2006,116(1):237-248.

[33] Spadaccio C,Nappi F,de Marco F,et al. Implantation of a poly-L-lactide GCSF-functionalized scaffold in a model of chronic myocardial infarction[J]. J Cardiovasc Transl Res,2017,10(1):47-65.

[34] Chung HJ,Kim JT,Kim HJ,et al. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction[J]. J Control Release,2015,205:218-230.

[35] Marsano A,Maidhof R,Luo J,et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction[J]. Biomaterials,2013,34(2):393-401.

[36] Querdel E,Reinsch M,Castro L,et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner[J]. Circulation,2021,143(20):1991-2006.

[37] Scheinowitz M,Kotlyar AA,Zimand S,et al. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion[J]. Isr Med Assoc J,2002,4(2):109-113.

[38] Hermans JJ,van Essen H,Struijker-Boudier HA,et al. Pharmacokinetic advantage of intrapericardially applied substances in the rat[J]. J Pharmacol Exp Ther,2002,301(2):672-678.

[39] 王琎,陈建英. 细胞外囊泡研究新进展[J]. 中国组织工程研究,2017,21(4):621-626.

[40] Mackie AR,Klyachko E,Thorne T,et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction[J]. Circ Res,2012,111(3):312-321.

[41] Liu B,Lee BW,Nakanishi K,et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng,2018,2(5):293-303.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(10):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(10):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(10):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(10):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(10):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(10):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2022-12-26