[1]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
 ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
点击复制

果糖代谢与血脂异常的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年12期
页码:
1114
栏目:
综述
出版日期:
2022-12-25

文章信息/Info

Title:
Fructose Metabolism and DyslipidemiaA Systematic Review
作者:
张嘉原12 张莉2
(1.河北北方学院研究生院,河北 张家口 075000;2.河北省人民医院,河北 石家庄 050051)
Author(s):
ZHANG Jiayuan12 ZHANG Li2
(1.Hebei North University Graduate School,Zhangjiakou 075000 ,Hebei,China; 2.Hebei General Hospital,Shijiazhuang 050051 ,Hebei,China)
关键词:
果糖血脂异常非酒精性脂肪性肝病肠道菌群
Keywords:
FructoseDyslipidemiaNonalcoholi fatty liver diseaseGut microbiota
DOI:
10.16806/j.cnki.issn.1004-3934.2022.12.013
摘要:
血脂异常是心血管疾病最常见的危险因素之一,且随着年龄的增长、饮食结构的改变,其发病率显著增加。而血脂异常容易导致冠心病、脑血管病等疾病的发生风险增加。因此,控制血脂水平对于防治心血管疾病具有重要的意义。近年来,果糖在肠道代谢、肝脏代谢、肠道菌群等方面不断有新进展,果糖通过自身转换、影响脂类物质吸收转换等方面对血脂异常的发生起到促进作用。现阐述果糖对血脂水平的影响。
Abstract:
Dyslipidemia is one of the most common risk factors for cardiovascular disease,and its incidence increases significantly with age and dietary changes.Dyslipidemia can easily lead to an increased risk of coronary heart disease,cerebrovascular disease and other diseases.Therefore,controlling blood lipid levels is of great significance for the prevention and treatment of cardiovascular diseases.In recent years,fructose has made new progress in intestinal metabolism,liver metabolism,and intestinal flora. This paper describes the relationship between fructose and dyslipidemia

参考文献/References:


[1] 诸骏仁,高润霖,赵水平,等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中华心血管病杂志,2016,44(10):833-853.

[2] Te Morenga LA,Howatson AJ,Jones RM,et al. Dietary sugars and cardiometabolic risk:systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids[J]. Am J Clin Nutr,2014,100(1):65-79.

[3] Malik VS,Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases[J]. Nat Rev Endocrinol,2022,18(4):205-218.

[4] 中国营养学会. 中国居民膳食指南[M]. 北京:人民卫生出版社,2016(4):8.

[5] Payant MA,Chee MJ. Neural mechanisms underlying the role of fructose in overfeeding[J]. Neurosci Biobehav Rev,2021,128:346-357.

[6] Johnson RJ,Stenvinkel P,Andrews P,et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change,food shortage and droughts[J]. J Intern Med.2020;287(3):252-262.

[7] Johnson RJ,Nakagawa T,Sanchez-Lozada LG,et al. Sugar,uric acid,and the etiology of diabetes and obesity[J]. Diabetes,2013,62(10):3307-3315.

[8] Geidl-Flueck B,Hochuli M,Németh ?,et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis:a randomized controlled trial[J]. J Hepatol ,2021,75(1):46-54.

[9] Zhang YH,An T,Zhang RC,et al. Very high fructose intake increases serum LDL-cholesterol and total cholesterol:a meta-analysis of controlled feeding trials[J]. J Nutr,2013,143(9):1391-1398.

[10] Yan N. A glimpse of membrane transport through structures-advances in the structural biology of the GLUT glucose transporters[J]. J Mol Biol,2017,429(17):2710-2725.

[11] Hannou SA,Haslam DE,McKeown NM,et al. Fructose metabolism and metabolic disease[J]. J Clin Invest,2018,128(2):545-555.

[12] Kellett GL,Brot-Laroche E,Mace OJ,et al.Sugar absorption in the intestine:the role of GLUT2[J]. Annu Rev Nutr,2008,28:35-54.

[13] Jang C,Hui S,Lu W,et al. The small intestine converts dietary fructose into glucose and organic acids[J]. Cell Metab,2018,27(2):351-361.e3.

[14] Lee HJ,Cha JY. Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism[J]. BMB Rep,2018,51(9):429-436.

[15] Silbernagel G,Machann J,Unmuth S,et al.Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity,visceral fat and intrahepatic lipids:an exploratory trial[J]. Br J Nutr,2011,106(1):79-86.

[16] Steenson S,Shojaee-Moradie FB,Whyte M,et al. The effect of fructose feeding on intestinal triacylglycerol production and de novo fatty acid synthesis in humans[J]. Nutrients,2020,12(6):1781.

[17] Xiao C,Dash S,Morgantini C,et al. Novel role of enteral monosaccharides in intestinal lipoprotein production in healthy humans[J]. Arterioscler Thromb Vasc Biol,2013,33(5):1056-1062.

[18] Taylor SR,Ramsamooj S,Liang RJ,et al. Dietary fructose improves intestinal cell survival and nutrient absorption[J]. Nature,2021,597(7875):263-267.

[19] Brahimi-Horn C,Pouysségur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion[J]. Bull Cancer,2006,93(8):E73-E80.

[20] Al-Jawadi A,Patel CR,Shiarella RJ,et al. Cell-type-specific,ketohexokinase-dependent induction by fructose of lipogenic gene expression in mouse small intestine[J]. J Nutr,2020,150(7):1722-1730.

[21] Beisner J,Gonzalez-Granda A,Basrai M,et al. Fructose-induced intestinal microbiota shift following two types of short-term high-fructose dietary phases[J]. Nutrients,2020,12(11):3444.

[22] Lambertz J,Weiskirchen S,Landert S,et al. Fructose:a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease[J]. Front Immunol,2017,8:1159.

[23] Spruss A,Kanuri G,Stahl C,et al. Metformin protects against the development of fructose-induced steatosis in mice:role of the intestinal barrier function[J]. Lab Invest,2012,92(7):1020-1032.

[24] Todoric J,di Caro G,Reibe S,et al. Fructose stimulated de novo lipogenesis is promoted by inflammation[J]. Nat Metab,2020,2(10):1034-1045.

[25] Mouries J,Brescia P,Silvestri A,et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol.2019,71(6):1216-1228.

[26] Diggle CP,Shires M,McRae C,et al. Both isoforms of ketohexokinase are dispensable for normal growth and development[J]. Physiol Genomics,2010,42A(4):235-243.

[27] Basaranoglu M,Basaranoglu G,Sabuncu T,et al. Fructose as a key player in the development of fatty liver disease[J]. World J Gastroenterol,2013,19(8):1166-1172.

[28] Patel C,Douard V,Yu S,et al.Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK[J]. Am J Physiol Regul Integr Comp Physiol,2015,309(5):R499-R509.

[29] Softic S,Gupta MK,Wang G,et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling[J]. J Clin Invest,2017,127(11):4059-4074.

[30] Feng X,Zhang L,Xu S,et al. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis :An updated review[J]. Prog Lipid Res,2020,77:101006.

[31] Wree A,Eguchi A,McGeough MD,et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis ,liver inflammation,and fibrosis in mice[J]. Hepatology,2014,59(3):898-910.

[32] Ouyang X,Cirillo P,Sautin Y,et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease[J]. J Hepatol,2008,48(6):993-999.

[33] Mardinoglu A,Wu H,Bjornson E,et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans[J]. Cell Metab,2018,27(3):559-571.

[34] Gutierrez JA,Liu W,Perez S,et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction[J]. Mol Metab,2021,48:101196.

[35] Schürmann A. Insight into the "odd" hexose transporters GLUT3 ,GLUT5,and GLUT7[J]. Am J Physiol Endocrinol Metab,2008,295(2):E225-E226.

[36] Diggle CP,Shires M,Leitch D,et al. Ketohexokinase :expression and localization of the principal fructose-metabolizing enzyme[J]. J Histochem Cytochem ,2009,57(8):763-774.

[37] Zuo YQ,Gao ZH,Yin YL,et al. Association between the cardiometabolic index and hyperuricemia in an asymptomatic population with normal body mass index[J]. Int J Gen Med ,2021,14:8603-8610.

[38] Sukiasyan L. Fructose-induced alteration of the heart and vessels homeostasis[J]. Curr Probl Cardiol,2021:101013.

[39] Mirtschink P,Jang C,Arany Z,et al. Fructose metabolism ,cardiometabolic risk,and the epidemic of coronary artery disease[J]. Eur Heart J,2018,39(26):2497-2505.

[40] World Health Organization. Guideline:sugars intake for adults and children[M]. Geneva:World Health Organization,2015.

相似文献/References:

[1]杨晓倩 秦莉 张艺文 童兰 汪汉.糖皮质激素与心血管疾病[J].心血管病学进展,2020,(4):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
 YANG Xiaoqian,QIN Li,ZHANG Yiwen,et al.Glucocorticoid and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(12):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
[2]孟凡华 付真彦.一种新型的治疗血脂异常的干扰RNA药物Inclisiran[J].心血管病学进展,2021,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.018]
 MENG Fanhua,FU Zhenyan.Inclisiran, A New Small Interfering RNA Drug for the Treatment of Dyslipidemia[J].Advances in Cardiovascular Diseases,2021,(12):167.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.018]
[3]袁荣辉 白春林.贝派地酸降脂疗效及安全性的研究进展[J].心血管病学进展,2021,(9):809.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 (.Shanxi Medical University,Taiyuan 0000,Shanxi,et al.YUAN Ronghui1,BAI Chunlin2[J].Advances in Cardiovascular Diseases,2021,(12):809.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]

更新日期/Last Update: 2023-02-03