[1]李博 杨童 刘锦 蒋鹏 周倩.分子影像探针在血栓性疾病早期诊断中的研究进展[J].心血管病学进展,2022,(1):56-59.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.015]
 LI Bo,YANG Tong,LIU Jin,et al.Molecular Imaging Probes for Early Diagnosis of Thrombotic Diseases[J].Advances in Cardiovascular Diseases,2022,(1):56-59.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.015]
点击复制

分子影像探针在血栓性疾病早期诊断中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年1期
页码:
56-59
栏目:
出版日期:
2022-01-25

文章信息/Info

Title:
Molecular Imaging Probes for Early Diagnosis of Thrombotic Diseases
作者:
李博12 杨童2 刘锦2 蒋鹏3 周倩2
(1.广东药科大学中医药研究院,广东 广州 510006;2.暨南大学生命科学学院,广东 广州 510632;3.中国医学科学院输血研究所,四川 成都 610052)
Author(s):
LI Bo12YANG Tong2LIU Jin2JIANG Peng3ZHOU Qian2
(1.Institute of Chinese Medicinal Sciences,Guangdong Pharmaceutical University,Guangzhou 510006,Guangdong,China; 2.College of Life Science and Technology,Jinan University,Guangzhou 510632,Guangdong,China; 3.Institute of Blood Transfusion,Chinese Academy of Medical Sciences and Peking Union Medical College,Chengdu 610052,Sichuan,China)?/html>
关键词:
血栓分子影像学早期诊断分子探针微纳米材料
Keywords:
ThrombosisMolecular imagingEarly diagnosisMolecular probesMicro/nano materials
DOI:
10.16806/j.cnki.issn.1004-3934.2022.01.015
摘要:
血栓性疾病仍是导致全球人口死亡的主要病因之一,严重威胁人类健康。现阶段,血栓的临床影像学检查仅能识别陈旧性血栓,无法筛查急性新发血栓,更无法检测血栓的生理活动状态,严重制约着血栓性疾病的精准诊断及合理有效抗血栓疗法的管理决策。近期,借助于微纳米材料靶向血栓形成中特异性标志物分子探针的迅速发展,其有望实现体内血栓的快速诊断和类型鉴别,进一步增进人们对血栓性疾病病因及发病机制的了解,给血栓性疾病的早期个性化治疗带来了新的希望和机遇。现综述分子影像学探针在血栓诊断领域的研究进展,并讨论其现存的问题及未来的临床转化前景。
Abstract:
Thrombotic diseases remains one of the leading causes of death worldwide and seriously threaten human health. At this stage,the clinical imaging examination of thrombus can only identify old thrombus,can not screen acute new thrombus,and can not detect the physiological activity of thrombus,which seriously restricts the accurate diagnosis of thrombotic diseases and the management decision of reasonable and effective antithrombotic therapy. Recently,with the rapid development of molecular probes targeting specific markers in thrombosis with micro/nano materials,it is expected to realize the rapid diagnosis and type identification of thrombosis in vivo,further improve people’s understanding of the etiology and pathogenesis of thrombotic diseases,and bring new hope and opportunities to the early personalized treatment of thrombotic diseases. This paper reviews the research progress of molecular imaging probes in the field of thrombus diagnosis,and discusses its existing problems and future clinical transformation prospects.

参考文献/References:

[1] Koupenova M,Clancy L,Corkrey HA,et al. Circulating platelets as mediators of immunity,inflammation,and thrombosis[J]. Circ Res,2018,122(2):337-351.

[2] Wendelboe AM,Raskob GE. Global burden of thrombosis:epidemiologic aspects[J]. Circ Res,2016,118(9):1340-1347.

[3] Lanza GM,Cui G,Schmieder AH,et al. An unmet clinical need:the history of thrombus imaging[J]. J Nucl Cardiol,2019,26(3):986-997.

[4] Hafiane A. Vulnerable plaque,characteristics,detection,and potential therapies[J]. J Cardiovasc Dev Dis,2019,6(3):26.

[5] van der Meijden PEJ,Heemskerk JWM. Platelet biology and functions:new concepts and clinical perspectives[J]. Nat Rev Cardiol,2019,16(3):166-179.

[6] Yeung J,Li W,Holinstat M. Platelet signaling and disease:targeted therapy for thrombosis and other related diseases[J]. Pharmacol Rev,2018,70(3):526-548.

[7] Lindner JR,Song J,Christiansen J,et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin[J]. Circulation,2001,104(17):2107-2112.

[8] Davidson BP,Chadderdon SM,Belcik JT,et al. Ischemic memory imaging in nonhuman primates with echocardiographic molecular imaging of selectin expression[J]. J Am Soc Echocardiogr,2014,27(7):786-793.

[9] Appeldoorn CC,Molenaar TJ,Bonnefoy A,et al. Rational optimization of a short human P-selectin-binding peptide leads to nanomolar affinity antagonists[J]. J Biol Chem,2003,278(12):10201-10207.

[10] Xu J,Zhou J,Zhong Y,et al. Phase transition nanoparticles as multimodality contrast agents for the detection of thrombi and for targeting thrombolysis:in vitro and in vivo experiments[J]. ACS Appl Mater Interfaces,2017,9(49):42525-42535.

[11] Rouzet F,Bachelet Violette L,Alsac JM,et al. Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation[J]. J Nucl Med,2011,52(9):1433-1440.

[12] Suzuki M,Bachelet-Violette L,Rouzet F,et al. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus[J]. Nanomedicine(Lond),2015,10(1):73-87.

[13] Li B,Aid-Launais R,Labour MN,et al. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus[J]. Biomaterials,2019,194:139-150.

[14] Nguyen H,Tinet E,Chauveau T,et al. Bimodal fucoidan-coated zinc oxide/iron oxide-based nanoparticles for the imaging of atherothrombosis[J]. Molecules,2019,24(5):962.

[15] Zheng K,Kaiser Y,Poel E,et al. 99Mtc-fucoidan as diagnostic agent for P-selectin imaging:first-in-human evaluation (phase I)[J]. Atherosclerosis,2019,287:e143.

[16] Unger E,Porter T,Lindner J,et al. Cardiovascular drug delivery with ultrasound and microbubbles[J]. Adv Drug Deliv Rev,2014,72:110-126.

[17] Hu G,Liu C,Liao Y,et al. Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo[J]. Thromb Haemost,2012,107(1):172-183.

[18] Ye S,Liu Y,Lu Y,et al. Cyclic RGD functionalized liposomes targeted to activated platelets for thrombosis dual-mode magnetic resonance imaging[J]. J Mater Chem B,2020,8(3):447-453.

[19] Rix A,Fokong S,Heringer S,et al. Molecular ultrasound imaging of αvβ3- integrin expression in carotid arteries of pigs after vessel injury[J]. Invest Radiol,2016,51(12):767-775.

[20] Kang CM,Koo HJ,An GI,et al. Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a (64)Cu-labeled streptavidin/biotin-based dimeric RGD peptide[J]. EJNMMI Res,2015,5(1):60.

[21] Wu Y,Wang C,Guo J,et al. An RGD modified water-soluble fluorophore probe for in vivo NIR-Ⅱ imaging of thrombosis[J]. Biomater Sci,2020,8(16):4438-4446.

[22] Bai S,Liao J,Zhang B,et al. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi[J]. Biomater Sci,2020,8(18):5047-5060.

[23] Lim B,Yao Y,Huang AL,et al. A unique recombinant fluoroprobe targeting activated platelets allows in vivo detection of arterial thrombosis and pulmonary embolism using a novel three-dimensional fluorescence emission computed tomography(FLECT) technology[J]. Theranostics,2017,7(5):1047-1061.

[24] Ta H,Li Z,Hagemeyer C,et al. Self-confirming molecular imaging of activated platelets via iron oxide nanoparticles displaying unique dual MRI contrast[J]. Atherosclerosis,2017,263:e146.

[25] Ta HT,Li Z,Hagemeyer CE,et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast[J]. Biomaterials,2017,134:31-42.

[26] Li Y,Xin F,Hu J,et al. Functionalization of NaGdF4 nanoparticles with a dibromomaleimide-terminated polymer for MR/optical imaging of thrombosis[J]. Polym Chem,2020,11(5):1010-1017.

[27] Lin H,Xu L,Yu S,et al. Therapeutics targeting the fibrinolytic system[J]. Exp Mol Med,2020,52(3):367-379.

[28] Botnar RM,Perez AS,Witte S,et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent[J]. Circulation,2004,109(16):2023-2029.

[29] Overoye-Chan K,Koerner S,Looby RJ,et al. EP-2104R:a fibrin-specific gadolinium-based MRI contrast agent for detection of thrombus[J]. J Am Chem Soc,2008,130(18):6025-6039.

[30] Ay I,Blasi F,Rietz TA,et al. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe[J]. Circ Cardiovasc Imaging,2014,7(4):697-705.

[31] Gale EM,Atanasova IP,Blasi F,et al. A manganese alternative to gadolinium for MRI contrast[J]. J Am Chem Soc,2015,137(49):15548-15557.

[32] Oliveira BL,Blasi F,Rietz TA,et al. Multimodal molecular imaging reveals high target uptake and specificity of 111In- and 68Ga-labeled fibrin-binding probes for thrombus detection in rats[J]. J Nucl Med,2015,56(10):1587-1592.

[33] Hara T,Bhayana B,Thompson B,et al. Molecular imaging of fibrin deposition in deep vein thrombosis using fibrin-targeted near-infrared fluorescence[J]. JACC Cardiovasc Imaging,2012,5(6):607-615.

[34] Lux J,Vezeridis AM,Hoyt K,et al. Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis[J]. ACS Appl Mater Interfaces,2017,9(43):37587-37596.

[35] Kwon SP,Jeon S,Lee SH,et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging[J]. Biomaterials,2018,150:125-136.

[36] Wang Y,Xu M,Yang N,et al. A thrombin-responsive nanoprobe for in vivo visualization of thrombus formation through three-dimensional optical/computed tomography hybrid imaging[J]. ACS Appl Mater Interfaces,2021,13(24):27814-27824.

[37] Zhang Y,Zhong Y,Ye M,et al. Polydopamine-modified dual-ligand nanoparticles as highly effective and targeted magnetic resonance/photoacoustic dual-modality thrombus imaging agents[J]. Int J Nanomedicine,2019,14: 7155-7171.

[38] Günther F,Heidt T,Kramer M,et al. Dual targeting improves capture of ultrasound microbubbles towards activated platelets but yields no additional benefit for imaging of arterial thrombosis[J]. Sci Rep,2017,7(1):14898.

[39] Yang A,Qiao B,Strohm EM,et al. Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics[J]. Biomater Sci,2020,8(16):4545-4558.

[40] Su M,Dai Q,Chen C,et al. Nano-medicine for thrombosis:a precise diagnosis and treatment strategy[J]. Nanomicro Lett,2020,12(1):96.

相似文献/References:

[1]刘如晨,综述,徐争鸣,等.血栓抽吸在急性ST段抬高型心肌梗死中的研究进展[J].心血管病学进展,2016,(3):240.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.006]
 LIU Ruchen,XU Zhengming,LI Tianchang.Thrombus Aspiration in the Treatment of Acute ST-segment Elevation Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(1):240.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.006]
[2]左海奇 孙鑫 田野.替格瑞洛与氯吡格雷抑制中性粒细胞减轻急性ST段抬高型心肌梗死患者冠状动脉血栓炎症的对比研究[J].心血管病学进展,2020,(5):537.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.023]
 ZUO Haiqi,SUN Xin,TIAN Ye.A Comparative Study of Effects of Ticagrelor and Clopidogrel on Neutrophils in Coronary Thrombosis in Patients with A cute ST-segment Elevation Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(1):537.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.023]
[3]方纬 李剑明.核医学新技术助力心血管疾病的精准诊疗[J].心血管病学进展,2023,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.001]
 FANG Wei,LI Jianming.Innovative Technology in Nuclear Medicine Optimize Precise Diagnosis and Treatment for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.001]
[4]韩月清 吴建军 邹昕宇 张有奇 邢磊 杨帆.红细胞在急性心肌梗死相关冠状动脉微血管障碍中的研究进展[J].心血管病学进展,2023,(6):537.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.013]
 HAN Yueqing,WU Jianjun,ZOU Xinyu,et al.Study of Red Blood Cells in Coronary Microvascular Dysfunction Associated with Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(1):537.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.013]

更新日期/Last Update: 2022-02-17