[1]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
 YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
点击复制

五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年2期
页码:
188
栏目:
论著
出版日期:
2022-02-25

文章信息/Info

Title:
Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway
作者:
杨帆12 吴建军2
(1.哈尔滨医科大学附属第二医院心肌缺血教育部重点实验室,黑龙江 哈尔滨150001;2.哈尔滨医科大学附属第二医院心血管内科,黑龙江 哈尔滨 150001)
Author(s):
YANG Fan12WU Jianjun2
(1.Key Laboratory of Myocardial Ischemia,Ministry of Education,Harbin Medical University, Harbin 150001,Heilongjiang,China;2.Department of Cardiology,The Second Affiliated Hospital of Harbin Medical University,Harbin 150001,Heilongjiang,China)
关键词:
糖尿病五味子乙素氧化应激细胞凋亡
Keywords:
DiabetesSchisandrin BOxidative stressApoptosis
DOI:
10.16806/j.cnki.issn.1004-3934.2022.02.022
摘要:
目的 研究五味子乙素(Sch.B)是否可通过降低活性氧(ROS)的生成保护糖尿病状态下心肌细胞;是否通过抑制细胞凋亡减轻高糖诱导的心肌细胞损伤。方法 链脲佐菌素诱导Wistar大鼠制备1型糖尿病模型。口服药物Sch.B 4周后进行取材和检测。心肌细胞分为低糖组和高糖组,高糖+Sch.B组和高糖+氧自由基清除剂组。DHE染色检测各组细胞ROS的生成,并用Hoechst33258检测各组细胞凋亡情况。结果 Sch.B组大鼠心肌组织排列相对规整,染色均一。Sch.B组与糖尿病组大鼠相比凋亡相关蛋白半胱天冬酶-3/9和线粒体中细胞色素C表达下降。DHE染色可发现,Sch.B处理后能明显降低高糖诱导心肌细胞的ROS生成。Hoechst33258染色可发现,Sch.B和氧自由基清除剂处理后可明显降低高糖处理心肌细胞凋亡的比例。结论 Sch.B可抑制糖尿病状态下心肌细胞胞浆和线粒体中ROS的生成,抑制心肌细胞氧化应激反应,降低线粒体途径的细胞凋亡保护心肌细胞。
Abstract:
Objective The aim of the present study was to investigate : if Sch.B could alleviate the injury of cardiomyocytes by reducing the generation of ROS; if cell apoptosis could be decreased by Sch.B. Methods STZ-induced Wistar rats were established for type 1 diabetes model and observed after oral administration of Sch.B for 4 weeks. Cardiomyocytes were divided into groups as follows:control group,high glucose(HG) group,HG+Sch.B group and HG+NAC ( N-Acetyl-L-cysteine) group. Results Our results showed that the arrangement of myocardial tissue in Sch.B group was relatively regular and the staining showed uniform. After treatment with Sch.B,the expression of apoptosis-related proteins Caspase-3/9 and cytochrome C in mitochondria decreased compared with diabetic rats. DHE staining showed that Sch.B treatment could significantly reduce the ROS production of cardiomyocytes in HG. Hoechst33258 staining showed that Sch.B and NAC treatment could significantly reduce the proportion of cell apoptosis in HG-induced group. Conclusion Sch.B can protect cardiomyocytes by reducing the production of ROS in the cytoplasm and mitochondria,and inhibit cellular oxidative stress through mitochondria apoptotic pathway

参考文献/References:

[1]Yuan T,Yang T,Chen H,et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis[J]. Redox Biol,2019,20:247-260.

[2]Cao Y,Yan L,Guo N,et al. Non-high-density lipoprotein cholesterol and risk of cardiovascular disease in the general population and patients with type 2 diabetes:a systematic review and meta-analysis [J]. Diabetes Res Clin Pract,2019,147:1-8.

[3]Yoneyama K,Venkatesh BA,Wu CO,et al. Diabetes mellitus and insulin resistance associate with left ventricular shape and torsion by cardiovascular magnetic resonance imaging in asymptomatic individuals from the multi-ethnic study of atherosclerosis[J]. J Cardiovasc Magn Reson,2018,20(1):53.

[4]Newman JD,Vani AK,Aleman JO,et al. The changing landscape of diabetes therapy for cardiovascular risk reduction:JACC state-of-the-art review[J]. J Am Coll Cardiol,2018,72(15):1856-1869.

[5]Yang F,Zhang L,Gao Z,et al. Exogenous H2S protects against diabetic cardiomyopathy by activating autophagy via the AMPK/mTOR pathway[J]. Cell Physiol Biochem,2017,43(3):1168-1187.

[6]Marincic PZ,Salazar MV,Hardin A,et al. Diabetes self-management education and medical nutrition therapy:a multisite study documenting the efficacy of registered dietitian nutritionist interventions in the management of glycemic control and diabetic dyslipidemia through retrospective chart review[J]. J Acad Nutr Diet,2019 Ma,119(3):449-463.

[7]Ma Z,Xu G,Shen Y,et al. Schisandrin B-mediated TH17 cell differentiation attenuates bowel inflammation[J]. Pharmacol Res,2021,166:105459.

[8]Lee HJ,Jung YH,Choi GE,et al. Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis[J]. Cell Death Differ,2021,28(1):184-202.

[9]Alharbi T,McIntyre M,Thomacos N,et al. Core competencies for diabetes educators:a scoping review protocol[J]. JBI Database System Rev Implement Rep,2018,16(6):1381-1386.

[10]Al-Atram AA. A review of the bidirectional relationship between psychiatric disorders and diabetes mellitus[J]. Neurosciences (Riyadh),2018,23(2):91-96.

[11]Alfadhel M,Babiker A. Inborn errors of metabolism associated with hyperglycaemic ketoacidosis and diabetes mellitus:narrative review[J]. Sudan J Paediatr,2018,18(1):10-23.

[12]Agide FD,Shakibazadeh E. Contextualizing ottawa charter frameworks for type 2 diabetes prevention:a professional perspective as a review[J]. Ethiop J Health Sci,2018,28(3):355-364.

[13]Wu J,Jia J,Liu L,et al. Schisandrin B displays a protective role against primary pulmonary hypertension by targeting transforming growth factor β1[J]. J Am Soc Hypertens,2017,11(3):148-157.e1.

[14]杨帆,吴建军. 硫化氢调控肺动脉高压机制的研究进展[J]. 实用心脑肺血管病杂志,2021,29(9):137-140.

[15]Paneni F,Cosentino F. Advanced glycation endproducts and plaque instability:a link beyond diabetes[J]. Eur Heart J,2014,35(17):1095-1097.

[16]Okemah J,Peng J,Qui?ones M . Addressing clinical inertia in type 2 diabetes mellitus:a review[J]. Adv Ther,2018,35(11):1735-1745.

[17]Divers J,Palmer ND,Lu L,et al. Admixture mapping of coronary artery calcified plaque in African Americans with type 2 diabetes mellitus[J]. Circ Cardiovasc Genet,2013,6(1):97-105.

[18]Gu Y,Dennis SM,Kiernan MC,et al. Aerobic exercise training may improve nerve function in type 2 diabetes and pre-diabetes:a systematic review[J]. Diabetes Metab Res Rev ,2019,35(2):e3099.

相似文献/References:

[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
 ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(2):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
 HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(2):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[3]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
 XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(2):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[4]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(2):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[5]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(2):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[6]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
 Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(2):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
[7]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[8]高婧晗 刘飞 杨晓蕾 夏云龙.钙离子稳态的调控在糖尿病相关心房颤动中的作用[J].心血管病学进展,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
 GAO Jinghan,LIU Fei,YANG Xiaolei,et al.Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(2):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
[9]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(2):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[10]邹昕宇 杨帆 吴建军 邢磊.端粒长度在心脑血管疾病的研究进展[J].心血管病学进展,2022,(12):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]
 ZOU Xinyu,YANG Fan,WU Jianjun,et al.Telomere Length in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]

更新日期/Last Update: 2022-08-19