参考文献/References:
[1] Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science,2012,337(6096):816-821.
[2] Smithies O,Gregg RG,Boggs SS,et al. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination [J]. Nature,1985,317(6034):230-234.
[3] Zhang F,Wen Y,Guo X. CRISPR/Cas9 for genome editing: progress,implications and challenges[J]. Hum Mol Genet,2014,23(R1):R40-R46.
[4] Cong L,Ran FA,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[5] Mali P,Yang L,Esvelt KM,et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.
[6] Hsu PD,Lander ES,Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell,2014,157(6):1262-1278.
[7] Shalem O,Sanjana NE,Hartenian E,et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science,2014,343(6166):84-87.
[8] Platt RJ,Chen S,Zhou Y,et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell,2014,159(2):440-455.
[9] Torphy TJ,Fine CF,Burman M,et al. Lower esophageal sphincter relaxation is associated with increased cyclic nucleotide content[J].Am J Physiol,1986,251(6 Pt 1):G786-G793.
[10] Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018 ,9(1):1911.
[11] Wang H,Yang H,Shivalila CS,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153(4):910-918.
[12] Vermersch E,Jouve C,Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells[J]. Cardiovasc Res,2020,116(5):894-907.
[13] Ley TJ,Miller C,Ding L,et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. New Engl J Med,2013,368(22):2059-2074.
[14] Biagioni A,Skalamera I,Peri S,et al. Update on gastric cancer treatments and gene therapies[J]. Cancer Metastasis Rev,2019,38(3):537-548.
[15] Matano M,Date S,Shimokawa M,et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015,21(3):256- 262.
[16] Zych AO,Bajor M,Zagozdzon R. Application of genome editing techniques in immunology[J].Arch Immunol Ther Exp (Warsz),2018,66(4):289-298.
[17] Memi F,Ntokou A,Papangeli I. CRISPR/Cas9 gene-editing:research technologies,clinical applications and ethical considerations[J]. Semin Perinatol,2018,42(8):487-500.
[18] Garmy-Susini B,Delmas E,Gourdy P,et al. Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation[J]. Circ Res,2004,94(10):1301-1309.
[19] Yamamoto S,Ooshima Y,Nakata M,et al. Efficient gene-targeting in rat embryonic stem cells by CRISPR/Cas and generation of human kynurenine aminotransferase Ⅱ (KAT Ⅱ) knock-in rat[J]. Transgenic Res,2015,24(6):991-1001.
[20] Fan Z,Perisse IV,Cotton CU,et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene[J]. JCI insight,2018,3(19):e123529.
[21] Nishiga M,Qi LS,Wu JC. Therapeutic genome editing in cardiovascular diseases[J]. Adv Drug Deliv Rev,2021,168:147-157.
[22] Sharma G,Sharma AR,Bhattacharya M,et al. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases[J]. Mol Ther,2021,29(2):571-586.
[23] Zeng Y,Li J,Li G,et al. Correction of the marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther,2018,26(11):2631-2637.
[24] Chen D,Zhang Z,Chen C,et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism[J].Nucleic Acids Res,2019,47(10):5341-5355.
[25] Chapman KM,Medrano GA,Jaichander P,et al. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells[J]. Cell Rep,2015,10(11):1828-1835.
[26] Guo M,Xu Y,Dong Z,et al. Inactivation of ApoC3 by CRISPR/Cas9 Protects Against Atherosclerosis in Hamsters[J]. Circ Res,2020,127(11):1456-1458.
[27] Zhao H,Li Y,He L,et al. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia[J]. Circulation,2020,141(1):67-79.
[28] Wang L,Luo JY,Li B,et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature,2016,540(7634):579-582.
[29] Sano S,Oshima K,Wang Y,et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease[J]. Circ Res,2018,123(3):335-341.
[30] Schoger E,Carroll KJ,Iyer LM,et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart[J]. Circ Res,2020,126(1):6-24.
[31] Hofsteen P,Robitaille AM,Chapman DP,et al. Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling[J]. Proc Natl Acad Sci U S A,2016,113(4):1002-1007.
[32] Zannas AS,Jia M,Hafner K,et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk[J]. Proc Natl Acad Sci U S A,2019,116(23):11370-11379.
[33] Jeong IS,Park Y,Ryu HA,et al. Corrigendum to "dual chemotactic factors-secreting human amniotic mesenchymal stem cells via TALEN-mediated gene editing enhanced angiogenesis" [Int. J. Cardiol. 260(2018) 156-162][J]. Int J Cardiol ,2018,263:186.
[34] Doetschman T,Georgieva T. Gene editing with CRISPR/Cas9 RNA-directed nuclease[J]. Circ Res,2017,120(5):876-894.
[35] German DM,Mitalipov S,Mishra A,et al. Therapeutic genome editing in cardiovascular diseases[J]. JACC Basic Transl Sci,2019,4(1):122-131.