[1]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780-783.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(9):780-783.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
点击复制

高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年9期
页码:
780-783
栏目:
综述
出版日期:
2021-09-25

文章信息/Info

Title:
Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure
文章编号:
202102064
作者:
王晓琪1 苏冠华2
(1.华中科技大学同济医学院第一临床学院,湖北 武汉 430022;2.华中科技大学同济医学院附属协和医院心血管内科,湖北 武汉 430022)
Author(s):
WANG Xiaoqi1 SU Guanhua2
(1.The First Clinical College,Tongji Medical College, Huazhong University of Science and Technology,Wuhan 430022,Hubei,China; 2.Department of Cardiology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,Hubei,China)
关键词:
心力衰竭高尿酸血症氧化应激炎症胰岛素抵抗
Keywords:
Heart failureHyperuricemiaOxidative stressInflammationInsulin resistance
DOI:
10.16806/j.cnki.issn.1004-3934.2021.09.000
摘要:
虽然心力衰竭以血流动力学紊乱为直观表现,但其潜在的神经内分泌激活和整体代谢失衡主导了心力衰竭的病程进展。心力衰竭患者常合并多种代谢紊乱,如何实施全面科学的代谢管理日益受到临床重视。高尿酸血症常见于各种程度的急性与慢性心力衰竭,尿酸水平与心力衰竭患者的心血管损害、临床表现严重程度和风险预后相关。现综述总结高尿酸血症加重心力衰竭的病理生理机制,讨论其治疗及预后价值。
Abstract:
Heart failure(HF) is characterized by hemodynamic disturbance,but the neuroendocrine activation and systemic metabolic imbalance also play a vital role in promoting the progress of HF. HF patients are often complicated with a variety of metabolic disorders. How to implement comprehensive and scientific metabolic management has been paid more and more attention. Meanwhile,hyperuricemia is common in various degrees of acute and chronic HF,and uric acid levels are associated with cardiovascular damage,severity of clinical manifestations and prognostic risk of HF patients. This review summarizes the pathophysiological mechanism of hyperuricemia aggravating HF,and discusses its treatment and prognostic value

参考文献/References:

[1] Doehner W,Frenneaux M,Anker SD. Metabolic impairment in heart failure:the myocardial and systemic perspective[J]. J Am Coll Cardiol,2014,64(13):1388-1400.

[2] Bozkurt B,Aguilar D,Deswal A,et al. Contributory risk and management of comorbidities of hypertension,obesity,diabetes mellitus,hyperlipidemia,and metabolic syndrome in chronic heart failure:a scientific statement from the American Heart Association[J]. Circulation,2016,134(23):e535-e578.

[3] Filippatos GS,Ahmed MI,Gladden JD,et al. Hyperuricaemia,chronic kidney disease,and outcomes in heart failure:potential mechanistic insights from epidemiological data[J]. Eur Heart J,2011,32(6):712-720.

[4] Kaufman M,Guglin M. Uric acid in heart failure:a biomarker or therapeutic target?[J]. Heart Fail Rev,2013,18(2):177-186.

[5] Huang H,Huang B,Li Y,et al. Uric acid and risk of heart failure:a systematic review and meta-analysis[J]. Eur J Heart Fail,2014,16(1):15-24.

[6] Berry CE,Hare JM. Xanthine oxidoreductase and cardiovascular disease:molecular mechanisms and pathophysiological implications[J]. J Physiol,2004,555(Pt 3):589-606.

[7] Bergamini C,Cicoira M,Rossi A,et al. Oxidative stress and hyperuricaemia:pathophysiology,clinical relevance,and therapeutic implications in chronic heart failure[J]. Eur J Heart Fail,2009,11(5):444-452.

[8] Landmesser U,Spiekermann S,Dikalov S,et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure:role of xanthine-oxidase and extracellular superoxide dismutase[J]. Circulation,2002,106(24):3073-3078.

[9] So A,Thorens B. Uric acid transport and disease[J]. J Clin Invest,2010,120(6):1791-1799.

[10] Lanaspa MA,Sanchez-Lozada LG,Choi YJ,et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress:potential role in fructose-dependent and -independent fatty liver[J]. J Biol Chem,2012,287(48):40732-40744.

[11] Sautin YY,Nakagawa T,Zharikov S,et al. Adverse effects of the classic antioxidant uric acid in adipocytes:NADPH oxidase-mediated oxidative/nitrosative stress[J]. Am J Physiol Cell Physiol,2007,293(2):C584-C596.

[12] Liu CW,Chen KH,Tseng CK,et al. The dose-response effects of uric acid on the prevalence of metabolic syndrome and electrocardiographic left ventricular hypertrophy in healthy individuals[J]. Nutr Metab Cardiovasc Dis,2019,29(1):30-38.

[13] Zhang XJ,Liu DM,Sun Y,et al. Potential risk of hyperuricemia:leading cardiomyocyte hypertrophy by inducing autophagy[J]. Am J Transl Res,2020,12(5):1894-1903.

[14] Cheng TH,Lin JW,Chao HH,et al. Uric acid activates extracellular signal-regulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts[J]. Int J Cardiol,2010,139(1):42-49.

[15] Lima WG,Martins-Santos ME,Chaves VE. Uric acid as a modulator of glucose and lipid metabolism[J]. Biochimie,2015,116:17-23.

[16] Albu A,Para I,Porojan M. Uric acid and arterial stiffness[J]. Ther Clin Risk Manag,2020,16:39-54.

[17] Ruggiero C,Cherubini A,Ble A,et al. Uric acid and inflammatory markers[J]. Eur Heart J,2006,27(10):1174-1181.

[18] Kang DH,Park SK,Lee IK,et al. Uric acid-induced C-reactive protein expression:implication on cell proliferation and nitric oxide production of human vascular cells[J]. J Am Soc Nephrol,2005,16(12):3553-3562.

[19] Aroor AR,Jia G,Habibi J,et al. Uric acid promotes vascular stiffness,maladaptive inflammatory responses and proteinuria in western diet fed mice[J]. Metabolism,2017,74:32-40.

[20] Riehle C,Abel ED. Insulin signaling and heart failure[J]. Circ Res,2016,118(7):1151-1169.

[21] Han T,Lan L,Qu R,et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension[J]. Hypertension,2017,70(4):703-711.

[22] Zhang JX,Zhang YP,Wu QN,et al. Uric acid induces oxidative stress via an activation of the renin-angiotensin system in 3T3-L1 adipocytes[J]. Endocrine,2015,48(1):135-142.

[23] Corry DB,Eslami P,Yamamoto K,et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system[J]. J Hypertens,2008,26(2):269-275.

[24] Mervaala EM,Cheng ZJ,Tikkanen I,et al. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes[J]. Hypertension,2001,37(2 Pt 2):414-418.

[25] White WB,Saag KG,Becker MA,et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout[J]. N Engl J Med,2018,378(13):1200-1210.

[26] Zhang M,Solomon DH,Desai RJ,et al. Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol:population-based cohort study[J]. Circulation,2018,138(11):1116-1126.

[27] Grimaldi-Bensouda L,Alpérovitch A,Aubrun E,et al. Impact of allopurinol on risk of myocardial infarction[J]. Ann Rheum Dis,2015,74(5):836-842.

[28] Larsen KS,Potteg?rd A,Lindegaard HM,et al. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients:a cohort study[J]. Am J Med,2016,129(3):299-306.e2.

[29] Givertz MM,Anstrom KJ,Redfield MM,et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients:The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study[J]. Circulation,2015,131(20):1763-1771.

[30] Davies MJ,Trujillo A,Vijapurkar U,et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab,2015,17(4):426-429.

[31] Caulfield MJ,Munroe PB,O’Neill D,et al. SLC2A9 is a high-capacity urate transporter in humans[J]. PLoS Med,2008,5(10):e197.

[32] Chino Y,Samukawa Y,Sakai S,et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria[J]. Biopharm Drug Dispos,2014,35(7):391-404.

[33] Guthrie R. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. Postgrad Med,2018,130(2):149-153.

[34] Anker SD,Doehner W,Rauchhaus M,et al. Uric acid and survival in chronic heart failure:validation and application in metabolic,functional,and hemodynamic staging[J]. Circulation,2003,107(15):1991-1997.

[35] Palazzuoli A,Ruocco G,de Vivo O,et al. Prevalence of hyperuricemia in patients with acute heart failure with either reduced or preserved ejection fraction[J]. Am J Cardiol,2017,120(7):1146-1150.

[36] von Lueder TG,Girerd N,Atar D,et al. Serum uric acid is associated with mortality and heart failure hospitalizations in patients with complicated myocardial infarction:findings from the High-Risk Myocardial Infarction Database Initiative[J]. Eur J Heart Fail,2015,17(11):1144-1151.

[37] Piepoli MF,Salvioni E,Corrà U,et al. Increased serum uric acid level predicts poor prognosis in mildly severe chronic heart failure with reduced ejection fraction. An analysis from the MECKI score research group[J]. Eur J Intern Med,2020,72:47-52.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(9):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(9):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(9):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(9):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(9):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(9):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(9):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2021-10-21