[1]王瑞钰,彭琳茜,李灵姣,等.硫氧还蛋白系统与高血压的研究进展[J].心血管病学进展,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
 WANG RuiyuPENG LinqianLI LingjiaoXUE QianWANG LiangDU WeiHUANG Jing.Thioredoxin System in Hypertension[J].Advances in Cardiovascular Diseases,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
点击复制

硫氧还蛋白系统与高血压的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年10期
页码:
1036
栏目:
综述
出版日期:
2020-10-25

文章信息/Info

Title:
Thioredoxin System in Hypertension
作者:
王瑞钰 彭琳茜 李灵姣 薛倩 王樑 杜威黄晶
(1.重庆医科大学附属第二医院心血管内科,重庆400010;2.重庆医科大学附属第一医院心血管内科,重庆400016;3.重庆医科大学生命科学研究院,重庆 400016)
Author(s):
WANG Ruiyu13PENG Linqian23LI Lingjiao13XUE Qian1WANG Liang1DU Wei1HUANG Jing1
(1Department of Cardiology,The Second Affiliated Hospital of Chongqing Medical University,Chongqing 400010,China; 2.Department of Cardiology,The First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China;3.Institute of Life Science,Chongqing Medical University,Chongqing 400016,China)
关键词:
硫氧还蛋白氧化应激高血压抗氧化
Keywords:
ThioredoxinOxidative stressHypertensionAnti-oxidation
DOI:
10.16806/j.cnki.issn.1004-3934.2020.10.009
摘要:
硫氧还蛋白系统是体内重要的氧化还原反应调节系统,除了能抑制氧化应激,还具有调节细胞生长、能量代谢以及信号转导等多种生物学功能。氧化应激是导致高血压病情进展的重要因素,维持机体正常的氧化还原状态对高血压的防治具有重要意义。最新研究表明硫氧还蛋白系统可以显著抑制高血压病程中的氧化应激,具有潜在的降血压和心脑血管保护效应。现对硫氧还蛋白系统与高血压的相关研究进展做一综述。
Abstract:
The thioredoxin system is a crucial redox regulatory system in organism. In addition to suppressing oxidative stress, the thioredoxin system contributes to regulating cell growth, energy metabolism, signal transduction and so on Oxidative stress is an important leading factor to promote the progression of hypertension, and maintaining the redox homeostasis is of great importance for the prevention and treatment of hypertension. Recent research has shown that the thioredoxin system can significantly alleviate oxidative stress and reduce blood pressure, in paralleled with a protective effect on heart and cerebral vessels in hypertension. The present study reviews the research progress of thioredoxin system in hypertension

参考文献/References:

[1] Lu JHolmgren A.The thioredoxin antioxidant system[J].Free Radic Biol Med,2014,66:75-87.
[2] Montezano AC,Dulak-Lis M,Tsiropoulou S,et al.Oxidative stress and human hypertension:vascular mechanisms,biomarkers,and novel therapies[J].Can J Cardiol,2015,31(5):631-641.
[3] Miwa K,Kishimoto C,Nakamura H,et al.Serum thioredoxin and alpha-tocopherol concentrations in patients with major risk factors[J].Circ J.2005.69(3):291-294.
[4] Mansego ML,Blesa S,Gonzalez-Albert V,et al.Discordant response of glutathione and thioredoxin systems in human hypertension[J].Antioxid Redox Signal,2007,9(4):507-514.
[5] Das KC,Kundumani-Sridharan V,Subramani J.Role of thioredoxin in age-related hypertension[J].Curr Hypertens Rep,2018,20(1):6.
[6] Matsuzawa A.Thioredoxin and redox signaling:roles of the thioredoxin system in control of cell fate[J].Arch Biochem Biophys,2017,617:101-105.
[7] Netto LE,Antunes F.The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction[J].Mol Cells,2016,39(1):65-71.
[8] Ren X,Zou L,Zhang X,et al.Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system[J].Antioxid Redox Signal,2017,27(13):989-1010.
[9] Kundumani-Sridharan V,Subramani J,Das KC.Thioredoxin activates MKK4-NFκB pathway in a redox-dependent manner to control manganese superoxide dismutase gene expression in endothelial cells[J].J Biol Chem,2015,290(28):17505-17519.
[10] Tanito M,Nakamura H,Kwon YW,et al.Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats[J].Antioxid Redox Signal,2004,6(1):89-97.
[11] Yamagata K,Tagami M,Ikeda K,et al.Altered gene expressions during hypoxia and reoxygenation in cortical neurons isolated from stroke-prone spontaneously hypertensive rats[J].Neurosci Lett,2000,284(3):131-134.
[12] Hilgers RH,Kundumani-Sridharan V,Subramani J,et al.Thioredoxin reverses age-related hypertension by chronically improving vascular redox and restoring eNOS function[J].Sci Transl Med,2017,9(376):eaaf6094.
[13] Choi H,Allahdadi KJ,Tostes RC,Webb RC.Augmented S-nitrosylation contributes to impaired relaxation in angiotensin Ⅱ hypertensive mouse aorta:role of thioredoxin reductase[J].J Hypertens,2011,29(12):2359-2368.
[14] Park YS,Fujiwara N,Koh YH,et al.Induction of thioredoxin reductase gene expression by peroxynitrite in human umbilical vein endothelial cells[J].Biol Chem,2002,383(3-4):683-691.
[15] Mohamed IN,Hafez SS,Fairaq A,et al.Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet[J].Diabetologia,2014,57(2):413-423.
[16] Mansego ML,Solar Gde M,Alonso MP,et al.Polymorphisms of antioxidant enzymes,blood pressure and risk of hypertension[J].J Hypertens,2011,29(3):492-500.
[17] Widder JD,Fraccarollo D,Galuppo P,et al.Attenuation of angiotensinⅡ-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2[J].Hypertension,2009,54(2):338-344.
[18] Subramani J,Kundumani-Sridharan V,Hilgers RH,et al.Thioredoxin uses a GSH-independent route to deglutathionylate endothelial nitric-oxide synthase and protect against myocardial infarction[J].J Biol Chem,2016,291(45):23374-23389.
[19] Huang C,Alapa M,Shu P,et al.Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1[J].J Biol Chem,2017,292(35):14362-14370.
[20] Tinkov AA,Bj?rklund G,Skalny AV,et al.The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome:towards a possible prognostic marker[J].Cell Mol Life Sci,2018,75(9):1567-1586.
[21] Liu Y,Min W.Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner[J].Circ Res,2002,90(12):1259-1266.
[22] El Hadri K,Mahmood DF,Couchie D,et al.Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis[J].Arterioscler Thromb Vasc Biol,2012,32(6):1445-1452.
[23] Dagnell M,Frijhoff J,Pader I,et al.Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling[J].Proc Natl Acad Sci U S A,2013,110(33):13398-13403.
[24] Choi H,Tostes RC,Webb RC.Thioredoxin reductase inhibition reduces relaxation by increasing oxidative stress and s-nitrosylation in mouse aorta[J].J Cardiovasc Pharmacol,2011,58(5):522-527.
[25] Xu S,He Y,Vokurkova M,et al.Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells:role of thioredoxin[J].Hypertension,2009,54(2):427-433.
[26] Trigona WL,Mullarky IK,Cao Y,et al.Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells[J].Biochem J,2006,394(Pt 1):207-216.
[27] Yamamoto M,Yang G,Hong C,et al.Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy[J].J Clin Invest,2003,112(9):1395-1406.
[28] Su H,Pistolozzi M,Shi X,et al.Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy[J].Acta Biochim Biophys Sin (Shanghai),2017,49(11):1022-1028.
[29] Hu C,Zhang H,Qiao Z,et al.Loss of thioredoxin 2 alters mitochondrial respiratory function and induces cardiomyocyte hypertrophy[J].Exp Cell Res,2018,372(1):61-72.
[30] Yang Y,Ago T,Zhai P,et al.Thioredoxin 1 negatively regulates angiotensin Ⅱ-induced cardiac hypertrophy through upregulation of miR-98/let-7[J].Circ Res,2011,108(3):305-313.
[31] Adluri RS,Thirunavukkarasu M,Zhan L,et al.Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction:a study using thioredoxin 1 transgenic mice[J].J Mol Cell Cardiol,2011,50(1):239-247.
[32] Zhang H,Liu Q,Lin JL,et al.Recombinant human thioredoxin-1 protects macrophages from oxidized low-density lipoprotein-induced foam cell formation and cell apoptosis[J].Biomol Ther (Seoul),2018,26(2):121-129.
[33] Canesi F,Mateo V,Couchie D,et al.A thioredoxin-mimetic peptide exerts potent anti-inflammatory,antioxidant,and atheroprotective effects in ApoE2.Ki mice fed high fat diet[J].Cardiovasc Res,2019,115(2):292-301.
[34] Yu T,Zhang W,Lin Y,et al.Prognostic value of serum thioredoxin levels in ischemic stroke[J].Neurol Res,2017,39(11):988-995.
[35] Wang B,Tian S,Wang J,et al.Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke[J].Brain Res,2015,1615:89-97.
[36] Kaya B,Erdi F,K?l?nc I,et al.Alterations of the thioredoxin system during subarachnoid hemorrhage-induced cerebral vasospasm[J].Acta Neurochir (Wien),2015,157(5):793-799;discussion 799-800.
[37] Ratliff BB,Abdulmahdi W,Pawar R,et al.Oxidant mechanisms in renal injury and disease[J].Antioxid Redox Signal,2016,25(3):119-146.
[38] Sinha N,Dabla PK.Oxidative stress and antioxidants in hypertension-a current review[J].Curr Hypertens Rev,2015,11(2):132-142.
[39] Ahmad KA,Yuan Yuan D,Nawaz W,et al.Antioxidant therapy for management of oxidative stress induced hypertension[J].Free Radic Res,2017,51(4):428-438.

相似文献/References:

[1]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
 JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(10):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(10):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
 YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(10):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
 LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(10):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
[5]李丹 徐蔓 唐其柱.Nox5在心血管疾病中的作用[J].心血管病学进展,2020,(12):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
 Li Dan,Xu Man,Tang Qizhu.The Role of Nox5 in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(10):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
[6]李海通 闫莉.甲状腺疾病相关肺动脉高压发病机制研究进展[J].心血管病学进展,2021,(3):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
 LI Haitong,YAN Li.Pathogenesis of Thyroid Disease-related Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(10):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
[7]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
 MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(10):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
[8]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(10):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[9]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
 SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(10):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[10]周慧鑫 谌虎 刘志豪 周雨扬 李泽衍 许骁 陈华强 刘承哲 刘旨浩 王宇虹 王悦怡 赖燕秋 余锂镭 江洪.二甲双胍对心肌梗死后心脏功能的影响及其机制研究[J].心血管病学进展,2022,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]

备注/Memo

备注/Memo:
收稿日期:2020-03-29
更新日期/Last Update: 2020-12-21