参考文献/References:
[1]van Riet EE,Hoes AW,Wagenaar KP,et al. Epidemiology of heart failure:the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review[J]. Eur J Heart Fail,2016,18(3):242-252.
[2]Seferovi? PM,Petrie MC,Filippatos GS,et al. Type 2 diabetes mellitus and heart failure:a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail,2018,20(5):853-872.
[3]Upadhya B,Pisani B,Kitzman DW. Evolution of a geriatric syndrome:pathophysiology and treatment of heart failure with preserved ejection fraction[J]. J Am Geriatr Soc,2017,65(11):2431-2440.
[4]Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol,2014,11(9):507-515.
[5]Pieske B,Tsch?pe C,de Boer RA,et al. How to diagnose heart failure with preserved ejection fraction:the HFA-PEFF diagnostic algorithm:a consensus recommendation from the Heart Failure Association(HFA) of the European Society of Cardiology(ESC)[J]. Eur Heart J,2019,40(40):3297-3317.
[6]Zheng SL,Chan FT,Nabeebaccus AA,et al. Drug treatment effects on outcomes in heart failure with preserved ejection fraction:a systematic review and meta-analysis[J]. Heart,2018,104(5):407-415.
[7]朱文彤,姚亚丽. 射血分数保留的心力衰竭的发病机制及最新治疗研究进展[J]. 心血管病学进展,2019,40(4):557-560.
[8] Vaduganathan M,Michel A,Hall K,et al. Spectrum of epidemiological and clinical findings in patients with heart failure with preserved ejection fraction stratified by study design:a systematic review[J]. Eur J Heart Fail,2016,18(1):54-65.
[9] Oktay AA,Shah SJ. Current perspectives on systemic hypertension in heart failure with preserved ejection fraction[J]. Curr Cardiol Rep,2014,16(12):545.
[10] Tadic M,Cuspidi C,Frydas A,et al. The role of arterial hypertension in development heart failure with preserved ejection fraction:just a risk factor or something more?[J]. Heart Fail Rev,2018,23(5):631-639.
[11] de Almeida AC,van Oort RJ,Wehrens XH. Transverse aortic constriction in mice[J]. J Vis Exp,2010,38:1729.
[12] Litwin SE,Katz SE,Weinberg EO,et al. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy.Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure[J]. Circulation,1995,91(10):2642-2654.
[13] Respress JL,van Oort RJ,Li N,et al. Role of RyR2 phosphorylation at S2814 during heart failure progression[J]. Circ Res,2012,110(11):1474-1483.
[14] Patten RD,Hall-Porter MR. Small animal models of heart failure:development of novel therapies,past and present[J]. Circ Heart Fail,2009,2(2):138-144.
[15] Garcia-Menendez L,Karamanlidis G,Kolwicz S,et al. Substrain specific response to cardiac pressure overload in C57BL/6 mice[J]. Am J Physiol Heart Circ Physiol,2013,305(3):H397-H402.
[16] Doi R,Masuyama T,Yamamoto K,et al. Development of different phenotypes of hypertensive heart failure:systolic versus diastolic failure in Dahl salt-sensitive rats[J]. J Hypertens,2000,18(1):111-120.
[17] Esposito G,Cappetta D,Russo R,et al. Sitagliptin reduces inflammation,fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction[J]. Br J Pharmacol,2017,174(22):4070-4086.
[18] Kamimura D,Ohtani T,Sakata Y,et al. Ca2+ entry mode of Na +/Ca2+ exchanger as a new therapeutic target for heart failure with preserved ejection fraction[J]. Eur Heart J,2012,33(11):1408-1416.
[19] Omori Y,Ohtani T,Sakata Y,et al. L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease[J]. J Hypertens,2012,30(9):1834-1844.
[20] Tamaki S,Mano T,Sakata Y,et al. Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction[J]. PLoS One,2013,8(7):e68893.
[21] Lovelock JD,Monasky MM,Jeong EM,et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity[J]. Circ Res,2012,110(6):841-850.
[22] Horgan S,Watson C,Glezeva N,et al. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction[J]. J Card Fail,2014,20(12):984-995.
[23] Silberman GA,Fan TH,Liu H,et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction[J]. Circulation,2010,121(4):519-528.
[24] Grobe JL,Mecca AP,Mao H,et al. Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension[J]. Am J Physiol Heart Circ Physiol,2006,290(6):H2417-H2423.
[25] Iyer A,Chan V,Brown L. The DOCA-salt hypertensive rat as a model of cardiovascular oxidative and inflammatory stress[J]. Curr Cardiol Rev,2010,6(4):291-297.
[26] Sun Y,Liu G,Song T,et al. Upregulation of GRP78 and caspase-12 in diastolic failing heart[J]. Acta Biochim Pol,2008,55(3):511-516.
[27] Kuoppala A,Shiota N,Lindstedt KA,et al. Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure[J]. J Hypertens,2003,21(9):1729-1736.
[28] Regan JA,Mauro AG,Carbone S,et al. A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensinⅡ[J]. Am J Physiol Heart Circ Physiol,2015,309(5):H771-H778.
[29] Deneke T,Shin D I,Balta O,et al. Postablation asymptomatic cerebral lesions:long-term follow-up using magnetic resonance imaging[J]. Heart Rhythm,2011,8(11):1705-1711.
[30] Takaki M. Cardiac mechanoenergetics for understanding isoproterenol-induced rat heart failure[J]. Pathophysiology,2012,19(3):163-170.
[31] Ma X,Song Y,Chen C,et al. Distinct actions of intermittent and sustained beta-adrenoceptor stimulation on cardiac remodeling[J]. Sci China Life Sci,2011,54(6):493-501.
[32] Rothermund L,Kreutz R,Kossmehl P,et al. Early onset of chondroitin sulfate and osteopontin expression in angiotensinⅡ-dependent left ventricular hypertrophy[J]. Am J Hypertens,2002,15(7 Pt 1):644-652.
[33] Zhao Z,Wang H,Jessup J A,et al. Role of estrogen in diastolic dysfunction[J]. Am J Physiol Heart Circ Physiol,2014,306(5):H628-H640.
[34] Jessup JA,Wang H,MacNamara LM,et al. Estrogen therapy,independent of timing,improves cardiac structure and function in oophorectomized mRen2.Lewis rats[J]. Menopause,2013,20(8):860-868.
[35] Wang H,Jessup JA,Lin MS,et al. Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats[J]. Cardiovasc Res,2012,94(1):96-104.
[36] Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction:comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.
[37] Kenny HC,Abel ED. Heart failure in type 2 diabetes mellitus[J]. Circ Res,2019,124(1):121-141.
[38] Dunlay SM,Givertz MM,Aguilar D,et al. Type 2 Diabetes Mellitus and Heart Failure,A Scientific Statement From the American Heart Association and Heart Failure Society of America[J]. J Card Fail,2019,25(8):584-619.
[39] Aon MA,Foster DB. Diabetic cardiomyopathy and the role of mitochondrial dysfunction:novel insights,mechanisms,and therapeutic strategies[J]. Antioxid Redox Signal,2015,22(17):1499-1501.
[40] Schilling JD,Mann DL. Diabetic cardiomyopathy:bench to bedside[J]. Heart Fail Clin,2012,8(4):619-631.
[41] Paolillo S,Marsico F,Prastaro M,et al. Diabetic cardiomyopathy:definition,diagnosis,and therapeutic implications[J]. Heart Fail Clin,2019,15(3):341-347.
[42] Concei??o G,Heinonen I,Louren?o AP,et al. Animal models of heart failure with preserved ejection fraction[J]. Neth Heart J,2016,24(4):275-286.
[43] Mori J,Patel VB,Abo Alrob O,et al. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation[J]. Circ Heart Fail,2014,7(2):327-339.
[44] Wei M,Ong L,Smith MT,et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes[J]. Heart Lung Circ,2003,12(1):44-50.
[45] Sartori M,Conti FF,Dias DDS,et al. Association between diastolic dysfunction with inflammation and oxidative stress in females ob/ob mice[J]. Front Physiol,2017,8:572.
[46] Zhou X,Ma L,Habibi J,et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat[J]. Hypertension,2010,55(4):880-888.
[47] Hamdani N,Franssen C,Louren?o A,et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model[J]. Circ Heart Fail,2013,6(6):1239-1249.
[48] Reed AL,Tanaka A,Sorescu D,et al. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse[J]. Am J Physiol Heart Circ Physiol,2011,301(3):H824-H831.
[49] Koch SE,Haworth KJ,Robbins N,et al. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging:a retrospective study[J]. Ultrasound Med Biol,2013,39(11):2034-2043.
相似文献/References:
[1]孙慧雪 郑美芳 李海 孙磊 顾翔.远程医疗应用于射血分数保留性心力衰竭的现状及进展[J].心血管病学进展,2020,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
SUN Huixue,ZHENG Meifang,LI Hai,et al.Status Progress of Telemedicine in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(8):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
[2]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(8):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[3]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(8):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
[4]叶鹏飞 郭应坤 张怡 沈梦婷 李湘 陈林 徐婷 文凌仪.动脉粥样硬化斑块磁共振成像动物模型[J].心血管病学进展,2021,(8):730.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.014]
YE Pengfei,GUO Yingkun,ZHANG Yi,et al.Animal Models for Magnetic Resonance Imaging of Atherosclerotic Plaque[J].Advances in Cardiovascular Diseases,2021,(8):730.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.014]
[5]刘春秋 熊双 刘剑刚 董国菊.射血分数保留性心力衰竭的诊断的研究进展[J].心血管病学进展,2021,(9):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
LIU Chunqiu,XIONG Shuang,LIU Jiangang,et al.Diagnosis of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2021,(8):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[6]游月婷 黄刚 张小刚 张亚丽 邓自刚 屈树新 靳忠民 徐俊波.心力衰竭动物建模的进展[J].心血管病学进展,2021,(12):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
YOU YuetingHUANG Gang,ZHANG Xiaogang,ZHANG Yali,et al.Animal Models Establishment of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(8):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
[7]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(8):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[8]赵菲 刘永铭.抗炎类药物对射血分数保留性心力衰竭患者心外膜脂肪组织的影响[J].心血管病学进展,2022,(1):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
ZHAO Fei,LIU Yongming.Effects of Anti-Inflammatory Drugs on Epicardial Adipose Tissue in Patients with Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(8):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
[9]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(8):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
[10]胡美曦 黄志华 柳志红 赵智慧 罗勤 赵青.慢性血栓栓塞性肺动脉高压:构建动物模型的研究进展[J].心血管病学进展,2022,(3):236.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
HU Meixi,HUANG Zhihua,LIU Zhihong,et al.Chronic Thromboembolic Pulmonary Hypertension: Advances in Constructing Animal Models[J].Advances in Cardiovascular Diseases,2022,(8):236.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]