[1]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233-1237.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
 SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(9):1233-1237.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
点击复制

心肌纤维化研究的新领域——长链非编码RNA()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1233-1237
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
Long No-Coding RNAA New Field of Myocardial Fibrosis
作者:
孙敬辉 于永慧 王承龙
(中国中医科学院西苑医院心血管中心,北京 100091)
Author(s):
SUN JinghuiYU YonghuiWANG Chenglong
(Center for Cardiovascular DiseasesXiyuan HospitalChina Academy of Chinese Medical ScienceBeijing 100091China)
关键词:
心肌纤维化长链非编码RNA心室重构
Keywords:
Myocardial fibrosis Long no-coding RNA Ventricular remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.012
摘要:
心肌纤维化是心室重构的重要特征,可诱发心律失常和心力衰竭。目前,心肌纤维化的具体发病机制尚不清楚,临床上缺乏有效的治疗方法。随着越来越多长链非编码RNA的发现,其与心肌纤维化的联系也逐渐受到了人们的重视。通过调节长链非编码RNA的表达可以调控心肌纤维化的病理过程,这为心肌纤维化的研究开辟了一个崭新的领域。
Abstract:
Myocardial fibrosis is an important feature of ventricular remodeling, which can induce arrhythmia and heart failure. At present, the specific pathogenesis of myocardial fibrosis is still unclear, and there is a lack of effective treatment in clinical practice. With the discovery of more and more long no-coding RNAs (lncRNAs), their relationship with myocardial fibrosis has attracted increasing attention. The regulation of lncRNAs expression through either inhibiting disease-upregulated lncRNAs or increasing disease-downregulated lncRNAs can improve the pathological process of myocardial fibrosis, which opens up a new field for the study of myocardial fibrosis

参考文献/References:

促纤维化 n379519 miR-30 PFL miR-let-7d 11 lncR-30245 PPAR-γ/CTGF 12 Wisper TIA1相关蛋白 1 HOXA11-AS TGF-β1 15 MALAT1 miR-145 16 MIAT miR-24、miR-29a 1、 H19 DUSP5/ERK1/2、miR-455 2、2 Meg3 MMP-2 22 TUG1 miR-29c 24 AK081284 TGF-β1 27 抑纤维化 GAS5 miR-21 2 NRON NFATc3 31 CRNED Smad3 32 注:NFATc3:T细胞核因子c3

参 考 文 献
[1] Zhang SY, Gao SX, Wang YB, et al. ncRNA SRA1 promotes the activation of cardiac myofibroblasts through negative regulation of miR-148b[J].DNA Cell Biol, 2019,38(4):385-394.
[2] Huang SQ, Zhang L, Song JW, et al.Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model[J]. J Cell Physiol, 2019,234(3):2997-3006.
[3] Li N, Ponnusamy M, Li MP, et al. The role of microRNA and lncRNA-MicroRNA interactions in regulating ischemic heart disease[J].J Cardiovasc Pharmacol Ther,2017,22(2):105-111.
[4] Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene[J]. Oncogene, 2011,30(16):1956-1962.
[5] Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin Ⅱ-treated cardiac fibroblasts[J]. Int J Clin Exp Pathol,2014,7(4):1325-1336.
[6] Qu X, Song X, Yuan W, et al. Expression signature of lncRNAs and their potential roles in cardiac fibrosis of post-infarct mice[J]. Biosci Rep, 2016, 36(3):e00337.
[7] Huang ZP, Ding Y, Chen J, et al. Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy[J].Cardiovasc Res,2016,112(2): 543-554.
[8] Wang X, Yong C, Yu K, et al. Long noncoding RNA (lncRNA) n379519 promotes cardiac fibrosis in post-infarct myocardium by targeting miR-30[J]. Med Sci Monit,2018,24(6):3958-3965.
[9] Ladouceur M, Baron S, Nivet-Antoine V, et al. Role of myocardial collagen degradation and fibrosis in right ventricle dysfunction in transposition of the great arteries after atrial switch[J]. Int J Cardiol,2018,258(1):76-82.
[10] Duisters RF, Tijsen AJ, Schroen B, et al. MiR-133 and miR-30 regulate connective tissue growth factor implications for a role of microRNAs in myocardial matrix remodeling[J].Circ Res,2009,104(2):170-178.
[11] Liang HH, Pan ZW, Zhao XG, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d[J]. Theranostics, 2018, 8(4):1180-1194.
[12] Zhuang Y, Li T, Zhuang Y, et al. Involvement of lncR-30245 in myocardial infarction-induced cardiac fibrosis through PPAR-γ-mediated CTGF signaling pathway[J]. Can J Cardiol,2019,35(4):480-489.
[13] Micheletti R, Plaisance I, Abraham BJ, et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling[J]. Sci Transl Med, 2017,9(395):eaai9118.
[14] Yeowell HN, Walker LC, Mauger DM, et al. TIA nuclear proteins regulate the alternate splicing of lysyl hydroxylase 2[J]. J Invest Dermatol,2009,129(6): 1402-1411.
[15] Wang JT, Liu XW, Zhuang Q, et al. Long noncoding RNA homeobox A11 antisense promotes transforming growth factor β1-induced fibrogenesis in cardiac fibroblasts[J]. Mol Med Rep, 2019,19(4):2817-2284.
[16] Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis[J]. Cell Mol Life Sci, 2014,71(4):549-574.
[17] Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction[J]. J Cell Mol Med,2012,16(9):2150-2160.
[18] Qu X, Du Y, Shu Y, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium[J]. Sci Rep,2017, 7(2): 42657.
[19] Zhou J, ZhouY, Wang CX. LncRNA MIAT regulates fibrosis in hypertrophic cardiomyopathy (HCM) by mediating the expression of miR-29a-3p[J]. J Cell Biochem,2018, 120 (5): 7265-7275.
[20] Tao H, Cao W, Yang JJ, et al. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis[J]. Cardiovasc Pathol,2016,25(5):381-389.
[21] Huang ZW, Tian LH, Yang B, et al. Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis[J]. DNA Cell Biol,2017,36(9):759-766.
[22] Piccoli MT, Gupta S, Viereck J, et al. Inhibition of the cardiac fibroblast-enriched lncRNA meg3 prevents cardiac fibrosis and diastolic dysfunction[J]. Circ Res,2017,121(5):575-583.
[23] Higgins DF, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis[J]. Cell Cycle,2008,7(9):1128-1132.
[24] Zhu Y, Feng Z, Zhao J, et al. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia[J]. Mol Med Rep, 2018,18(3):3451-3460.
[25] Pappachan JM, Varughese GI, Sriraman R, et al. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management[J]. World J Diabetes, 2013,4(5):177-189.
[26] Goyal BR, Mehta AA. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion[J]. Hum Exp Toxicol, 2013,32(6):571-590.
[27] Zhang Y, Zhang YY, Li TT, et al. Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice[J]. J Mol Cell Cardiol,2018,115(1):64-72.
[28] Tao H, Zhang JG, Qin RH, et al. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway[J]. Toxicology,2017,386(5):11-18.
[29] He W, Wang C, Mu R, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles[J]. Oncogene,2017,36(29): 4212-4223.
[30] Shishodia G, Shukla S, Srivastava Y, et al. Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis[J].Mol Cancer,2015,14(6):116-129.
[31] Wang YP, Xu P, Zhang CX,et al. LncRNA NRON alleviates atrial fibrosis via promoting NFATc3 phosphorylation[J].Mol Cell Biochem,2019,457(1-2):169-177.
[32] Zheng DZ, Zhang Y, Hu YH, et al. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy[J].FEBS J,2019,286(9):1645-1655.

相似文献/References:

[1]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
 Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(9):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[2]马天雪 赵玉娟.长链非编码RNA及相关调控通路与急性心肌梗死的研究进展[J].心血管病学进展,2019,(8):1099.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.007]
 MA Tianxue,ZHAO Yujuan.Long Non-coding RNA and Its Related Regulatory Pathways and Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(9):1099.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.007]
[3]张雪鹤 李晓梅.长链非编码RNA在急性心肌梗死发病中的研究进展[J].心血管病学进展,2019,(9):1271.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.022]
 ZHANG XueheLI Xiaomei.Long Noncoding RNA and Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(9):1271.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.022]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(9):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(9):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[6]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(9):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[7]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
 FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(9):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[8]靳天慧 陈亮 宗刚军.非编码RNA在血管钙化中的调控作用[J].心血管病学进展,2020,(9):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
 JIN Tianhui,CHEN Liang,ZONG Gangjun.Regulatory Role of Non-coding RNA in Vascular Calcification[J].Advances in Cardiovascular Diseases,2020,(9):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
[9]陈小玲 陈玉成.肺高压心肌纤维化磁共振评价及临床意义[J].心血管病学进展,2021,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
 CHEN Xiaoling,CHEN Yucheng.Cardiac Magnetic Resonance Evaluation and the Clinical Value of Myocardial Fibrosis in Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(9):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
[10]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(9):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]

更新日期/Last Update: 2020-02-06