参考文献/References:
[1] Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract,2010,87(1):4-14
[2] Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel(RyR2)and Ca2+ homeostasis in rat heart[J].Diabetes, 2005,54(11):3082-3088.
[3] Luo M, Guan X, Luczak ED, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKⅡ[J]. J Clin Invest,2013,123(3):1262-1274.
[4] Anderson EJ, Kypson AP, Rodriguez E, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart[J]. J Am Coll Cardiol,2009,54(20):1891-1898.
[5] Wang J, Wang H, Hao P, et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats[J]. Mol Med, 2011,17(3-4):172-179.
[6] Pham T, Loiselle D, Power A, et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart[J]. Am J Physiol Cell Physiol, 2014,307(6):C499- C507.
[7] Li B, Liu S, Miao L,et al. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy[J]. Exp Diabetes Res, 2012,2012:216512.
[8] Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations[J]. Mitochondrion, 2007, 7(Suppl):S78-S88.
[9] Koopman WJ, Distelmaier F, Smeitink JA,et al. OXPHOS mutations and neurodegeneration[J]. EMBO J, 2013,32(1):9-29.
[10] Nikitin AG, Lavrikova EY, Chistiakov DA. The heteroplasmic 15059G>A mutation in the mitochondrial cytochrome b gene and essential hypertension in type 2 diabetes[J], Diabetes Metab Syndr,2012,6(3):150-156.
[11] Kofler B, Mueller EE, Eder W, et al. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study[J]. BMC Med Genet,2009,10:35.
[12] Chen J, Gusdon AM, Mathews CE. Role of genetics in resistance to type 1 diabetes[J]. Diabetes Metab Res Rev,2011,27(8):849-853.
[13] Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One,2014,9(8):e104771.
[14] Bouderba S, Sanz MN,Sánchez-Martín C, et al. Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model[J]. Exp Diabetes Res,2012,2012:430176.
[15] Kuo TH, Giacomelli F, Wiener J, et al. Pyruvate dehydrogenase activity in cardiac mitochondria from genetically diabetic mice[J]. Diabetes,1985, 34(11): 1075-1081.
[16] Boudina S, Bugger H, Sena S, et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart[J]. Circulation, 2009,119(9): 1272-1283.
[17] Martinet W, Knaapen MW, Kockx MM, et al. Autophagy in cardiovascular disease[J]. Trends Mol Med,2007,13(11):482-491.
[18] HanZ, Cao J, Song D, et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice[J]. PLoS One,2014,9(1):e86838.
[19] Zhao Y, Zhang L, Qiao Y, et al. Heme oxygenase-1 revents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy[J]. PLoS One,2013,8(9):e75927.
[20] Xu X, Kobayashi S, Chen K, et al.Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J].J Biol Chem,2013,288(25):18077-18092.
[21] Guo R, Zhang Y, Turdi S,et al. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy[J]. Biochim Biophys Acta, 2013,1832(8):1136-1148.
[22] Xu X, Hua Y,Zhang Y,et al. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation[J]. J Mol Cell Biol,2013,5(1):61-63.
[23] Okazaki T, Otani H, Shimazu T, et al. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart[J]. Free Radic Res,2011,45(10):1173-1183.
[24] Youle RJ, Narendra DP. Mechanisms of mitophagy[J].Nat Rev Mol Cell Biol,2011,12(1):9-14.
[25] Ferreira R,Guerra G, Padrao AI, et al. Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction[J]. Mitochondrion,2013, 13(6):762-771.
[26] Yin H,Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis,mitochondrial dysfunction and human diseases[J]. Free Radic Res,2012,46(8):959-974.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(6):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(6):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(6):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(6):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(6):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[8]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(6):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[9]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(6):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[10]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]