[1]童艳丽 齐 长永 刘正霞 鲁翔.白细胞介素-22/白细胞介素-22BP在心血管疾病中的研究进展[J].心血管病学进展,2023,(7):617.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.010]
 TONG Yanli,QI Changyong,LIU Zhengxia,et al.Interleukin-22/Interleukin-22BP in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(7):617.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.010]
点击复制

白细胞介素-22/白细胞介素-22BP在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
617
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
Interleukin-22/Interleukin-22BP in Cardiovascular Diseases
作者:
童艳丽1 齐 长永2 刘正霞 1 鲁翔 1
(1.南京医科大学第二附属医院老年医学实验室,江苏 南京 210003;2. 南京医科大学医药实验动物中心,江苏 南京 211112)
Author(s):
TONG Yanli1QI Changyong2LIU Zhengxia1LU Xiang1
Nanjing Medical University Laboratory of GeriatricThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing 210003JiangsuChina2.Medical Laboratory Animal Center,Nanjing Medical UniversityNanjing 211112JiangsuChina)
关键词:
动脉粥样硬化高血压IL-22IL-22BP
Keywords:
Atherosclerosis HypertensionInterleukin-22Interleukin-22BP
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.010
摘要:
心血管疾病是影响人类身体健康最主要的疾病之一,炎症在其发生发展中发挥着重要作用。长达二十多年的研究发现,白细胞介素(IL)-22是一把“双刃剑”,根据疾病所处微环境的不同,IL-22在炎症中既有保护作用,也有致病作用。IL-22可被可溶性IL-22受体(IL-22BP)中和。现综述以往关于IL-22/IL-22BP在心血管疾病中作用的研究结果。
Abstract:
Cardiovascular disease is one of the most important diseases affecting human health,and inflammation plays an important role in its occurrence and development. More than two decades of research have found that interleukin(IL)-22 is a "double-edged sword",with both protective and pathogenic effects in inflammation depending on the microenvironment of the disease. IL-22 can be neutralized by the soluble IL-22 receptor (IL-22BP). In this review,we will summarize the results of previous studies on the role of IL-22/IL-22BP in cardiovascular disease

参考文献/References:

[1] Akhmerov A,Parimon T. Extracellular vesicles,inflammation,and cardiovascular disease[J]. Cells,2022,11(14):2229.

[2] Sabihi M,B?ttcher M,Pelczar P,et al. Microbiota-dependent effects of IL-22[J]. Cells,2020,9(10):2205.

[3] Che Y,Su ZL,Xia L. Effects of IL-22 on cardiovascular diseases [J]. Int Immunopharmacol, 2020,81:106277.

[4] Zenewicz LA. IL-22 Binding protein (IL-22BP) in the regulation of IL-22 biology[J]. Front Immunol,2021,12:766586.

[5] Lücke J,Sabihi M,Zhang T,et al. The good and the bad about separation anxiety:roles of IL-22 and IL-22BP in liver pathologies[J]. Semin Immunopathol,2021,43(4):591-607.

[6] Keir M,Yi Y,Lu T,et al. The role of IL-22 in intestinal health and disease[J]. J Exp Med,2020,217(3):e20192195.

[7] Dudakov JA,Hanash AM,van den Brink MR. Interleukin-22:immunobiology and pathology[J]. Annu Rev Immunol,2015,33:747-785.

[8] Valeri M,Raffatellu M. Cytokines IL-17 and IL-22 in the host response to infection [J]. Pathog Dis,2016,74(9):ftw111.

[9] Lu Z,Liu R,Huang E,et al. MicroRNAs:new regulators of IL-22[J]. Cell Immunol,2016,304-305:1-8.

[10] Wolk K,Witte E,Witte K,et al. Biology of interleukin-22[J]. Semin Immunopathol,2010,32(1):17-31.

[11] Huber S,Gagliani N,Zenewicz LA,et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine[J]. Nature,2012,491(7423):259-263.

[12] Martin JC,Bériou G,Heslan M,et al. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid[J]. Mucosal Immunol,2014,7(1):101-113.

[13] Luo JW,Hu Y,Liu J,Yang H,et al. Interleukin-22:a potential therapeutic target in atherosclerosis[J]. Mol Med,2021,27(1):88.

[14] van Hoeven V,Munneke JM,Cornelissen AS,et al. Mesenchymal stromal cells stimulate the proliferation and IL-22 production of group 3 innate lymphoid cells[J]. J Immunol,2018,201(4):1165-1173.

[15] Chen Q,Lv J,Yang W,et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis[J]. Theranostics,2019,9(22):6424-6442.

[16] Yang FC,Chiu PY,Chen Y,et al. TREM-1-dependent M1 macrophage polarization restores intestinal epithelium damaged by DSS-induced colitis by activating IL-22-producing innate lymphoid cells[J]. J Biomed Sci,2019,26(1):46.

[17] Ye J,Wang Y,Xu Y,et al. Interleukin-22 deficiency alleviates doxorubicin-induced oxidative stress and cardiac injury via the p38 MAPK/macrophage/Fizz3 axis in mice[J]. Redox Biol,2020,36:101636.

[18] Gan ZS,Wang QQ,Li JH,et al. Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1[J].?Mediators Inflamm,2017,2017:8570818.

[19] Hu H,Li L,Yu T,et al. Interleukin-22 receptor 1 upregulation and activation in hypoxic endothelial cells improves perfusion recovery in experimental peripheral arterial disease[J]. Biochem Biophys Res Commun,2018,505(1):60-66.

[20] Rattik S,Hultman K,Rauch U,et al. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice[J]. Atherosclerosis,2015,242(2):506-514.

[21] Clarke MC,Figg N,Maguire JJ,et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis[J]. Nat Med,2006,12(9):1075-1080.

[22] Chang Y,Al-Alwan L,Risse PA,et al. TH17 cytokines induce human airway smooth muscle cell migration[J]. J Allergy Clin Immunol,2011,127(4):1046-1053.e2.

[23] Gong F,Wu J,Zhou P,et al. Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease[J]. Mediators Inflamm,2016,2016:8254797.

[24] Shi L,Ji QW,Liu L,et al. IL‐22 produced by Th22 cells aggravates atherosclerosis development in ApoE?/? mice by enhancing DC‐induced Th17 cell proliferation[J]. J Cell Mol Med ,2020,24(5):3064-3078.

[25] Libby P,Aikawa M. Stabilization of atherosclerotic plaques:new mechanisms and clinical targets[J]. Nat Med,2002,8(11):1257-1262.

[26] Fatkhullina AR,Peshkova IO,Dzutsev A,et al. An Interleukin-23-Interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis[J]. Immunity,2018,49(5):943-957.e9.

[27] Kahles F,Findeisen HM,Bruemmer D. Osteopontin:A novel regulator at the cross roads of inflammation,obesity and diabetes[J]. Mol Metab,2014,3(4):384-393.

[28] Zhang L,Wang T,Wang XQ,et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome[J]. PLoS One,2013,8(12):e71466.

[29] Takahashi J,Yamamoto M,Yasukawa H,et al. Interleukin-22 directly activates myocardial STAT3 (signal transducer and activator of transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury[J]. J Am Heart Assoc,2020,9(8):e014814.

[30] Niu G,Wright KL,Ma Y,et al. Role of Stat3 in regulating p53 expression and function[J]. Mol Cell Biol,2005,25(17):7432-7440.

[31] Naito AT,Okada S,Minamino T,et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury[J]. Circ Res,2010,106(11):1692-1702.

[32] Ye J,Ji QW,Liu JF,et al. Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin Ⅱ-treated mice[J]. J Am Heart Assoc,2017,6(10):e005875.

[33] Akbari H,Asadikaram G,Jafari A,et al. Atorvastatin,losartan and captopril may upregulate IL-22 in hypertension and coronary artery disease; the role of gene polymorphism[J]. Life Sci,2018,207:525-531.

[34] Sagar S,Liu PP,Cooper LT Jr. Myocarditis[J]. Lancet,2012,379(9817):738-747.

[35] Kong Q,Wu W,Yang F,et al. Increased expressions of IL-22 and Th22 cells in the coxsackievirus B3-Induced mice acute viral myocarditis[J]. Virol J,2012,9:232.

[36] Kong Q,Xue Y,Wu W,et al. IL-22 exacerbates the severity of CVB3-induced acute viral myocarditis in IL-17A-deficient mice[J]. Mol Med Rep,2013,7(4):1329-1335.

[37] Sonnenberg GF,Nair MG,Kirn TJ,et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A[J]. J Exp Med,2010,207(6):1293-1305.

[38] Guo Y,Wu W,Cen Z,et al. IL-22-producing Th22 cells play a protective role in CVB3-induced chronic myocarditis and dilated cardiomyopathy by inhibiting myocardial fibrosis[J]. Virol J,2014,11:230.

[39] Veselka J,Anavekar NS,Charron P. Hypertrophic obstructive cardiomyopathy[J]. Lancet,2017,389(10075):1253-1267.

[40] Ye J,Liu L,Ji Q,et al. Anti-interleukin-22-neutralizing antibody attenuates angiotensin Ⅱ-induced cardiac hypertrophy in mice[J]. Mediators Inflamm,2017,2017:5635929.

[41] Gu J,Zhou P,Liu Y,et al. Down-regulating Interleukin-22/Interleukin-22 binding protein axis promotes inflammation and aggravates diet-induced metabolic disorders[J]. Mol Cell Endocrinol,2022,557:111776.

相似文献/References:

[1]孙刚,黄冠华,综述.高血压合并心力衰竭的治疗策略[J].心血管病学进展,2016,(2):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
 SUN Gang,HUANG Guanhua.Treatment Strategy of Hypertension with Heart Failure[J].Advances in Cardiovascular Diseases,2016,(7):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
[2]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[3]范贵娟,综述,徐瑞,等.盐敏感性高血压的研究进展[J].心血管病学进展,2016,(4):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
 FAN Guijuan,XU Rui.Research Progress of Salt Sensitive Hypertension[J].Advances in Cardiovascular Diseases,2016,(7):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
[4]陈源源.钙通道阻滞剂在降压治疗中的应用[J].心血管病学进展,2015,(6):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
 CHEN Yuanyuan.Application of Calcium Channel Blockers in Hypertension Treatment[J].Advances in Cardiovascular Diseases,2015,(7):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
[5]张瑞 毛露 孙硕 Dirk Hermann 陈艾东.内皮素-1干预成为高血压治疗新靶点的展望[J].心血管病学进展,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
 ZHANG Rui MAO LuSUN ShuoDIRK Hermann CHEN Aidong.The Prospect of Endothelin-1 Intervention as A New Target for the Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
[6]张毅,柳志红.动态血压监测在高血压中的应用现状与问题[J].心血管病学进展,2019,(6):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
 ZHANG Yi,LIU Zhihong.Current status and nsolved Pproblems of Ambulatory Blood Pressure Monitoring for the Management of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
[7]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
 HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[8]张旭明 王曦.高血压对认知功能的影响[J].心血管病学进展,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
 ZHANG Xuming,WANG Xi.The Relationship Between Hypertension and Cognitive Function[J].Advances in Cardiovascular Diseases,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
[9]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[10]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[11]杨晓倩 秦莉 张艺文 童兰 汪汉.糖皮质激素与心血管疾病[J].心血管病学进展,2020,(4):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
 YANG Xiaoqian,QIN Li,ZHANG Yiwen,et al.Glucocorticoid and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(7):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
[12]邹昕宇 杨帆 吴建军 邢磊.端粒长度在心脑血管疾病的研究进展[J].心血管病学进展,2022,(12):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]
 ZOU Xinyu,YANG Fan,WU Jianjun,et al.Telomere Length in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(7):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]
[13]刘张弛 杨波.瞬时受体电位香草酸亚型4在心血管疾病中的研究进展[J].心血管病学进展,2023,(9):777.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.000]
 LIU Zhangchi,YANG Bo?/html>.Transient Receptor Potential Vanilloid 4 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(7):777.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.000]

更新日期/Last Update: 2023-08-18