[1]李彬 蒋学俊.水凝胶改善心肌梗死后心脏生物力学重构的研究进展[J].心血管病学进展,2022,(8):691-694.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.006]
 LI Bin,JIANG Xuejun.Biomechanics of Hydrogel After Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(8):691-694.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.006]
点击复制

水凝胶改善心肌梗死后心脏生物力学重构的研究进展(/HTML)
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年8期
页码:
691-694
栏目:
综述
出版日期:
2022-08-25

文章信息/Info

Title:
Biomechanics of Hydrogel After Myocardial Infarction
作者:
李彬 蒋学俊
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉430060)
Author(s):
LI Bin JIANG Xuejun
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060, Hubei,China)
关键词:
心肌梗死心力衰竭弹性模量水凝胶力学
Keywords:
Myocardial infarctionHeart failureElastic modulusHydrogelMechanics
DOI:
10.16806/j.cnki.issn.1004-3934.2022.08.006
摘要:
心肌梗死后心室重塑发生使得心脏整体生物力学重构,这种改变是患者进入心肌梗死后终末期心力衰竭的重要机制。因此,针对心肌梗死后心脏力学环境改变的治疗是心肌梗死后心力衰竭治疗的新思路,水凝胶作为一种新兴的治疗手段,可以改善病变后的心脏力学环境。现对近年来针对水凝胶治疗心肌梗死后心肌重构的相关研究进行综述并展望。
Abstract:
Ventricular remodeling after myocardial infarction changes the overall biomechanical environment of the heart,which is an important mechanism of end-stage heart failure after entering myocardial infarction. Therefore,the treatment of myocardial mechanical environment changes after myocardial infarction is a new idea for the treatment of heart failure after myocardial infarction,and hydrogel is a new treatment method. This article reviews and prospects the recent research on myocardial remodeling after myocardial infarction treated with hydrogel.

参考文献/References:

[1] 《中国心血管健康与疾病报告2020》编写组.《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志,2021,26(3):209-218.
[2] Seif-Naraghi SB,Singelyn JM,Salvatore MA,et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction[J]. Sci Transl Med,2013,5(173):173ra25.
[3] Creemers EE,Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart[J]. Cardiovasc Res,2011,89(2):265-272.
[4] del Re DP,Amgalan D,Linkermann A,et al. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol Rev,2019,99(4):1765-1817.
[5] Virag JA,Rolle ML,Reece J,et al. Fibroblast growth factor-2 regulates myocardial infarct repair:effects on cell proliferation,scar contraction,and ventricular function[J]. Am J Pathol,2007,171(5):1431-1440.
[6] Watanabe S,Shite J,Takaoka H,et al. Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure[J]. Eur Heart J,2006,27(7):832-838.
[7] Azeloglu EU,Costa KD. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy[J]. Am J Physiol Heart Circ Physiol,2010,298(3):H853-H860.
[8] Berry MF,Engler AJ,Woo YJ,et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. Am J Physiol Heart Circ Physiol,2006,290(6):H2196-H2203.
[9] 马鑫,张书宁,朱洪,等. 梗死心肌弹性模量与心肌结构及功能的时间依赖性相关变化[J]. 中国分子心脏病学杂志,2014,14(5):1089-1093.
[10] Blom AS,Pilla JJ,Gorman RC 3rd,et al. Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep[J]. Heart Fail Rev,2005,10(2):125-139.
[11] Klodell CT Jr,Aranda JM Jr,Mcgiffin DC,et al. Worldwide surgical experience with the Paracor HeartNet cardiac restraint device[J]. J Thorac Cardiovasc Surg,2008,135(1):188-195.
[12] Lietz K,Long JW,Kfoury AG,et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era:implications for patient selection[J]. Circulation,2007,116(5):497-505.
[13] Mantha S,Pillai S,Khayambashi P,et al. Smart hydrogels in tissue engineering and regenerative medicine[J]. Materials(Basel),2019,12(20):3323.
[14] Sakakibara Y,Tambara K,Sakaguchi G,et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor[J]. Eur J Cardiothorac Surg,2003,24(1):105-111; discussion 12.
[15] Frangogiannis NG. Pathophysiology of myocardial infarction[J]. Compr Physiol,2015,5(4):1841-1875.
[16] Wall ST,Walker JC,Healy KE,et al. Theoretical impact of the injection of material into the myocardium:a finite element model simulation[J]. Circulation,2006,114(24):2627-2635.
[17] Matsumura Y,Zhu Y,Jiang H,et al. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction[J]. Biomaterials,2019,217:119289.
[18] Dorsey SM,Haris M,Singh A,et al. Visualization of injectable hydrogels using chemical exchange saturation transfer MRI[J]. ACS Biomater Sci Eng,2015,1(4):227-237.
[19] Sabbah HN,Wang M,Gupta RC,et al. Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure[J]. JACC Heart Fail,2013,1(3):252-258.
[20] Chow A,Stuckey DJ,Kidher E,et al. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction[J]. Stem Cell Reports,2017,9(5):1415-1422.
[21] Efraim Y,Sarig H,Cohen Anavy N,et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction[J]. Acta Biomater,2017,50:220-233.
[22] Ifkovits JL,Tous E,Minakawa M,et al. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model[J]. Proc Natl Acad Sci U S A,2010,107(25):11507-11512.
[23] Lee LC,Wall ST,Klepach D,et al. Algisyl-LVR? with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart[J]. Int J Cardiol,2013,168(3):2022-2028.
[24] Frey N,Linke A,Süselbeck T,et al. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction:a first-in-man study[J]. Circ Cardiovasc Interv,2014,7(6):806-812.
[25] Wang RM,Christman KL. Decellularized myocardial matrix hydrogels:in basic research and preclinical studies[J]. Adv Drug Deliv Rev,2016,96:77-82.
[26] Anker SD,Coats AJ,Cristian G,et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial)[J]. Eur Heart J,2015,36(34):2297-2309.
[27] Mann DL,Lee RJ,Coats AJ,et al. One-year follow-up results from AUGMENT-HF:a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure[J]. Eur J Heart Fail,2016,18(3):314-325.
[28] Rao SV,Zeymer U,Douglas PS,et al. A randomized,double-blind,placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST-segment elevation myocardial infarction:Rationale and design of the PRESERVATION I tr ial[J]. Am Heart J,2015,170(5):929-937.
[29] Rao SV,Zeymer U,Douglas PS,et al. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction[J]. J Am Coll Cardiol,2016,68(7):715-723.
[30] Yang C,Tibbitt MW,Basta L,et al. Mechanical memory and dosing influence stem cell fate[J]. Nat Mater,2014,13(6):645-652.
[31] Heras-Bautista CO,Katsen-Globa A,Schloerer NE,et al. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes[J]. Biomaterials,2014,35(26):7374-7385.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(8):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(8):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(8):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(8):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(8):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(8):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(8):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[8]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(8):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[9]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(8):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[10]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(8):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[11]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[12]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(8):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
[13]陈广 文英 蒋学俊.可注射水凝胶在心肌梗死中的应用与进展[J].心血管病学进展,2023,(1):62.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.015]
 CHEN Guang,WEN Ying,J IANG Xuejun.Application and Progress of Injectable Hydrogel in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(8):62.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.015]
[14]韩冰 来春林.黑色素瘤缺乏因子2炎症小体在心血管疾病中的研究进展[J].心血管病学进展,2023,(11):986.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.007]
 HAN Bing,LAI Chunlin.Absent In Melanoma 2 Inflammasome in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(8):986.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.007]

备注/Memo

备注/Memo:
基金项目:湖北省卫生健康委科研立项青年基金(wj2019Q043)
更新日期/Last Update: 2022-10-08