[1]朱路 顾玲 刘斌.NLRP3 炎性小体在动脉型肺动脉高压中的研究进展[J].心血管病学进展,2022,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.016]
 ZHU Lu,GU Ling,LIU Bin.NLRP3 Inflammasome in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2022,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.016]
点击复制

NLRP3 炎性小体在动脉型肺动脉高压中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年2期
页码:
158
栏目:
综述
出版日期:
2022-02-25

文章信息/Info

Title:
NLRP3 Inflammasome in Pulmonary Arterial Hypertension
作者:
朱路12 顾玲3 刘斌12
(1.西南医科大学附属医院儿科,四川 泸州 646000;2.四川省出生缺陷临床研究中心,四川 泸州 646000;3.四川大学华西第二医院,四川 成都 610041 )
Author(s):
ZHU Lu12 GU Ling3 LIU Bin12
(1.Department of Pediatrics,The Affiliated Hospital of Southwest Medical University,Luzhou 646000,Sichuan,China; 2.Sichuan Clinical Research Center for Birth Defects,Luzhou 646000,Sichuan,China; 3.West China Second University Hospital,Sichuan University,Chengdu 610041, Sichuna,China)
关键词:
动脉型肺动脉高压炎症NLRP3 炎性小体
Keywords:
Pulmonary artery hypertensionInflammationNLRP3 inflammasome
DOI:
10.16806/j.cnki.issn.1004-3934.2022.02.016
摘要:
动脉型肺动脉高压(PAH)是一种以肺血管重构为主要病理特征的致死性疾病。肺血管重构与炎症密切相关,其中NLRP3炎性小体作为重要的炎症调节因子,在接收到外源性和内源性信号后,可促进促炎性因子的产生。众多研究表明,特异性或非特异性干预NLRP3炎性小体激活可抑制PAH病程的进展,NLRP3炎性小体似乎是PAH潜在的治疗靶点。现综述NLRP3炎性小体及其促进炎症的机制,并总结NLRP3炎性小体在PAH病理生理学中的研究进展。
Abstract:
Pulmonary artery hypertension (PAH) is a fatal disease with pulmonary vascular remodeling as the main pathological feature. Pulmonary vascular remodeling is closely related to inflammation and NLRP3 inflammasome is an important inflammatory regulator, which could promote the production of inflammatory cytokines when receiving exogenous and endogenous signals. Numerous studies have shown that the progression of the course of PAH could be inhibited by specific or non-specific intervention of NLRP3 inflammasome activation. Thus, NLRP3 inflammasome seems to be a potential therapeutic target for PAH. This review presents the NLRP3 inflammasome and its mechanism of promoting inflammation, and summarizes the research progress of NLRP3 inflammasome in the pathophysiology of PAH

参考文献/References:


[1] Simonneau G,Montani D,Celermajer DS,et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J,2019,53(1):1801913.

[2] Gall H,Felix JF,Schneck FK,et al. The Giessen pulmonary hypertension registry: survival in pulmonary hypertension subgroups[J]. J Heart Lung Transplant,2017,36(9):957-967.

[3] di Maria MV,Campbell KR,Burkett DA,et al. Parameters of right ventricular function reveal ventricular-vascular mismatch as determined by right ventricular stroke work versus pulmonary vascular resistance in children with pulmonary hypertension[J]. J Am Soc Echocardiogr,2020,33(2):218-225.

[4] Frid MG,Thurman JM,Hansen KC,et al. Inflammation,immunity,and vascular remodeling in pulmonary hypertension; Evidence for complement involvement?[J]. Glob Cardiol Sci Pract,2020,2020(1):e202001.

[5] Scott TE,Kemp-Harper BK,Hobbs AJ. Inflammasomes:a novel therapeutic target in pulmonary hypertension?[J]. Br J Pharmacol,2019,176(12):1880-1896.

[6] Wang Y,Liu X,Shi H,et al. NLRP3 inflammasome,an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases[J]. Clin Transl Med,2020,10(1):91-106.

[7] Dubois H,Wullaert A,Lamkanfi M. General strategies in inflammasome biology[J]. Curr Top Microbiol Immunol,2016,397:1-22.

[8] Man SM,Kanneganti TD. Regulation of inflammasome activation[J]. Immunol Rev,2015,265(1):6-21.

[9] Kelley N,Jeltema D,Duan Y,et al. The NLRP3 inflammasome:an overview of mechanisms of activation and regulation[J]. Int J Mol Sci,2019,20(13):3328.

[10] Wu Q,Liu H,Liao J,et al. Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model[J]. Biomed Pharmacother,2020,129:110384.

[11] Vecchié A,Bonaventura A,Toldo S,et al. IL-18 and infections:is there a role for targeted therapies?[J]. J Cell Physiol,2021,236(3):1638-1657.

[12] Hu Y,Chi L,Kuebler WM,et al. Perivascular Inflammation in Pulmonary Arterial Hypertension[J]. Cells,2020,9(11):2338.

[13] Stacher E,Graham BB,Hunt JM,et al. Modern age pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2012,186(3):261-272.

[14] Groth A,Vrugt B,Brock M,et al. Inflammatory cytokines in pulmonary hypertension[J]. Respir Res,2014,15(1):47.

[15] Joshi AA,Davey R,Rao Y,et al. Association between cytokines and functional,hemodynamic parameters,and clinical outcomes in pulmonary arterial hypertension[J]. Pulm Circ,2018,8(3):2045894018794051.

[16] Simpson CE,Chen JY,Damico RL,et al. Cellular sources of interleukin-6 and associations with clinical phenotypes and outcomes in pulmonary arterial hypertension[J]. Eur Respir J,2020,55(4):1901761.

[17] Tang C,Luo Y,Li S,et al. Characteristics of inflammation process in monocrotaline-induced pulmonary arterial hypertension in rats[J]. Biomed Pharmacother,2021,133:111081.

[18] Sharma BR,Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases[J]. Nat Immunol,2021,22(5):550-559.

[19] 武亚琳,梁斌,杨志明. NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J]. 心血管病学进展,2019,40(6):943-946.

[20] Farkas D,Alhussaini AA,Kraskauskas D,et al. Nuclear factor κB inhibition reduces lung vascular lumen obliteration in severe pulmonary hypertension in rats[J]. Am J Respir Cell Mol Biol,2014,51(3):413-425.

[21] Li L,Wei C,Kim IK,et al. Inhibition of nuclear factor-κB in the lungs prevents monocrotaline-induced pulmonary hypertension in mice[J]. Hypertension,2014,63(6):1260-1269.

[22] Sánchez-Gloria JL,Martínez-Olivares CE,Rojas-Morales P,et al. Anti-inflammatory effect of allicin associated with fibrosis in pulmonary arterial hypertension[J]. Int J Mol Sci,2021,22(16):8600.

[23] Yin J,You S,Liu H,et al. Role of P2X7R in the development and progression of pulmonary hypertension[J]. Respir Res,2017,18(1):127.

[24] Villegas LR,Kluck D,Field C,et al. Superoxide dismutase mimetic,MnTE-2-PyP,attenuates chronic hypoxia-induced pulmonary hypertension,pulmonary vascular remodeling,and activation of the NALP3 inflammasome[J]. Antioxid Redox Signal 2013,18(14):1753-1764.

[25] Udjus C,Cero FJ,Halvorsen B,et al. Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(6):L999-L1012.

[26] Zhang M,Xin W,Yu Y,et al. Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension[J]. J Mol Cell Cardiol,2020,138:23-33.

[27] Cero FT,Hillestad V,Sjaastad I,et al. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice[J]. Am J Physiol Lung Cell Mol Physiol,2015,309(4):L378-L387.

[28] Gupta M,Wani A,Ahsan AU,et al. Safranal inhibits NLRP3 inflammasome activation by preventing ASC oligomerization[J]. Toxicol Appl Pharmacol,2021,423:115582.

[29] Li Y,Li Y,Li L,et al. PKR deficiency alleviates pulmonary hypertension via inducing inflammasome adaptor ASC inactivation[J]. Pulm Circ,2021,11(4):20458940211046156.

[30] Tang B,Chen GX,Liang M,et al. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats[J]. Int J Cardiol,2015,180:134-141.

[31] Sun Y,Lu M,Sun T,et al. Astragaloside Ⅳ attenuates inflammatory response mediated by NLRP-3/calpain-1 is involved in the development of pulmonary hypertension[J]. J Cell Mol Med,2021,25(1):586-590.

[32] Murphy AJ,Kraakman MJ,Kammoun HL,et al. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome[J]. Cell Metab,2016,23(1):155-164.

[33] Parpaleix A,Amsellem V,Houssaini A,et al. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension[J]. Eur Respir J,2016,48(2):470-483.

[34] Trankle CR,Canada JM,Kadariya D,et al. IL-1 Blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure:a single-arm,open-label,phase ⅠB/Ⅱpilot study[J]. Am J Respir Crit Care Med,2019,199(3):381-384.

[35] Ridker PM,Everett BM,Thuren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.

[36] Hashimoto-Kataoka T,Hosen N,Sonobe T,et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A,2015,112(20):E2677-E2686.

[37] Toshner M,Church C,Harbaum L,et al. Mendelian randomisation and experimental medicine approaches to IL-6 as a drug target in PAH[J]. Eur Respir J,2021,59(1):2002463.

[38]Morisawa D,Hirotani S,Oboshi M,et al. Interleukin-18 disruption suppresses hypoxia-induced pulmonary artery hypertension in mice[J]. Int J Cardiol,2016,202:522-524.

[39] Bruns DR,Buttrick PM,Walker LA. Genetic ablation of interleukin-18 does not attenuate hypobaric hypoxia-induced right ventricular hypertrophy[J]. Am J Physiol Lung Cell Mol Physiol,2016,310(6):L542-L550.

相似文献/References:

[1]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
 XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(2):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
[2]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(2):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[3]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[4]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(2):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
[5]顾佳仪 刘正霞 鲁翔.白介素-1β在冠心病中的研究进展[J].心血管病学进展,2020,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.006]
 Gu Jiayi,Liu Zhengxia,Lu Xiang.Interleukin-1 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.006]
[6]王辉 蒋永兴 田野.下肢动脉硬化闭塞症:炎症机制与抗炎治疗的研究进展[J].心血管病学进展,2020,(2):179.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.020]
 WANG HuiJIANG YongxingTIAN Ye.Peripheral Arterial DiseaseA Research Progress Review of Inflammatory Mechanism and Anti-inflammatory Therapy[J].Advances in Cardiovascular Diseases,2020,(2):179.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.020]
[7]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
 YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(2):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[8]韩月 朱莉 宋桂仙.白介素-12家族在冠状动脉粥样硬化中的研究进展[J].心血管病学进展,2020,(5):508.[doi:10.16806/j.cnki.issn.1004-3934.20.05.016]
 HAN Yue,ZHU Li,SONG Guixian.Interleukin-12 Family in Coronary Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(2):508.[doi:10.16806/j.cnki.issn.1004-3934.20.05.016]
[9]汪汉,刘汉雄,蔡琳.2019冠状病毒病的心血管表现[J].心血管病学进展,2020,(11):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 WANG Han,LIU Hanxiong,CAI Lin.Cardiovascular Profiles in Corona V irus Disease 2019[J].Advances in Cardiovascular Diseases,2020,(2):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[10]张颖怡 刘金波 刘欢 赵娜 赵红薇 王宏宇.全身动脉粥样硬化斑块与脑梗死的关系:北京血管病变评价研究结果[J].心血管病学进展,2021,(3):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
 ZHANG YingyiLIU J inboLIU HuanZHAO NaZHAO HongweiWANG Hongyu.The Relationship Between Systematic Atherosclerotic Plaques and Cerebral Infarction:Results from Beijing Vascular Disease Evaluation Study[J].Advances in Cardiovascular Diseases,2021,(2):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]

更新日期/Last Update: 2022-08-19