[1]章澜 黄从新.心外膜与心脏修复再生[J].心血管病学进展,2021,(4):306-309.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.005]
 ZHANG Lan,HUANG Congxin.Epicardium in Cardiac Repair Regeneration[J].Advances in Cardiovascular Diseases,2021,(4):306-309.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.005]
点击复制

心外膜与心脏修复再生()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年4期
页码:
306-309
栏目:
综述
出版日期:
2021-04-25

文章信息/Info

Title:
Epicardium in Cardiac Repair Regeneration
作者:
章澜 黄从新
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北重点实验室,湖北 武汉 430060)
Author(s):
ZHANG LanHUANG Congxin
(Department of Cardiology,Renmin Hospital of Wuhan UniversityCardiovascular Research Institute,Wuhan UniversityHubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
心外膜心脏再生心脏损伤修复再生潜力
Keywords:
Epicardium Heart regeneration Heart injury repair Regenerative potential
DOI:
10.16806/j.cnki.issn.1004-3934.2021.04.005
摘要:
在所有脊椎动物中,心外膜是包裹心脏的一层间皮组织。在心脏发育和修复再生过程中,这个结构是重要细胞如血管平滑肌细胞、周细胞和成纤维细胞等的来源,并且分泌对心肌细胞的增殖和存活至关重要的因子。当心脏受损时心外膜会被重新激活,并刺激上皮向间充质转变中的发育基因程序。本综述就近年来对心外膜与心脏修复和再生的相关机制研究进行总结,旨在利用心外膜的再生潜力进行心脏修复并提出未来的观点,以突出新兴的治疗策略。
Abstract:
In all vertebrates,the epicardium is a layer of mesothelial tissue that surrounds the heart. In the process of heart development,repair and regeneration,this structure is the source of important cells such as vascular smooth muscle cells,pericytes and fibroblasts,and secretes factors that are essential for the proliferation and survival of cardiomyocytes. The epicardium reactivates when the heart is damaged and it stimulates the developmental genetic process of epithelial-to-mesenchymal transition. This review will summarize the mechanisms of epicardium and cardiac repair and regeneration in recent years,which aim to take advantage of the regeneration potential of epicardium for heart repair and put forward future viewpoints to highlight emerging therapeutic strategies.

参考文献/References:


[1] Benjamin EJ,Muntner P,Alonso A,et al. Heart disease and stroke statistics-2019 update:a report from the American Heart Association[J]. Circulation,2019,139(10):e56-e528.

[2] Burchfield JS,Xie M,Hill JA. Pathological ventricular remodeling:mechanisms:part 1 of 2[J]. Circulation,2013,128(4):388-400.

[3] Heallen TR,Kadow ZA,Kim JH,et al. Stimulating cardiogenesis as a treatment for heart failure[J]. Circ Res,2019,124(11):1647-1657.

[4] Vagnozzi RJ,Molkentin JD,Houser SR. New myocyte formation in the adult heart:endogenous sources and therapeutic implications[J]. Circ Res,2018,123(2):159-176.

[5] Forte E,Furtado MB,Rosenthal N. The interstitium in cardiac repair:role of the immune-stromal cell interplay[J]. Nat Rev Cardiol,2018,15(10):601-616.

[6] Cao J,Poss KD. The epicardium as a hub for heart regeneration[J]. Nat Rev Cardiol, 2018,15(10):631-647.

[7] González-Rosa JM,Martín V,Peralta M,et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish[J]. Development,2011,138(9):1663-1674.

[8] Marín-Juez R,Marass M,Gauvrit S,et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration[J]. Proc Natl Acad Sci USA,2016,113(40):11237-11242.

[9] Ponnusamy M,Liu F,Zhang YH,et al. Long noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) regulates cardiomyocyte proliferation and cardiac repair[J]. Circulation,2019,139(23):2668-2684.

[10] Porrello ER,Mahmoud AI,Simpson E,etal. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family[J]. Proc Natl Acad Sci USA,2013,110(1):187-192.

[11] Darehzereshki A,Rubin N,Gamba L,etal. Differential regenerative capacity of neonatal mouse hearts after cryoinjury[J]. Dev. Biol,2015,399(1):91-99.

[12] Patterson M,Barske L,Handel BV,etal. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration[J]. Nat Genet,2017,49(9):1346-1353.

[13] Leone M,Engel FB. Pseudo-bipolar spindle formation and cell division in postnatal binucleated cardiomyocytes[J]. J Mol Cell Cardiol,2019,134:69-73.

[14] Chablais F,Veit J,Rainer G,et al. The zebrafish heart regenerates after cryoinjury induced myocardial infarction[J]. BMC Dev Biol,2011:11-21.

[15] Kikuchi K,Holdway JE,Werdich AA,et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes[J]. Nature,2010,464(7288):601-605.

[16] Huang GN,Thatcher JE,McAnally J,et al. C/EBP transcription factors mediate epicardial activation during heart development and injury[J]. Science,2012 1,338(6114):1599-1603.

[17] Xu XY,Hu JP,Wu MM,et al. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans[J]. Biochem Biophys Res Commun,2015,468(1-2):312-318.

[18] Vieira JM,Howard S,Villa Del Campo C,et al. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease[J]. Nat Commun,2017,8:16034.

[19] González-Rosa JM,Burns CE,Burns CG. Zebrafish heart regeneration:15 years of discoveries[J]. Regeneration (Oxf) ,2017,4(3):105-123.

[20] Smart N,Risebro CA,Melville AA,et al. Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium[J]. Ann N Y Acad Sci,2007,1112:171-88.

[21] Zhou B,Pu WT. Isolation and characterization of embryonic and adult epicardium and epicardium-derived cells[J]. Methods Mol Biol,2012,843:155-168.

[22]Zhou B,Pu WT. Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles[J]. Circ Res,2012,111(11):e276- e280.

[23] Yan Y,Qin Q,Wu L,et al. Insulin-like growth factor 1 receptor signaling regulates embryonic epicardial cell proliferation through focal adhesion kinase pathway[J]. Acta Biochim Biophys Sin (Shanghai),2018,50(10):976-983.

[24] Zhou B,Honor LB,He H,et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors[J]. J Clin Invest,2011,121(5):1894-1904.

[25] Smart N,Risebro CA,Melville AA,et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization [J]. Nature,2007,445(7124):177-182.

[26] Duffey OJ,Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium[J]. Glob Cardiol Sci Pract,2016,2016(4):e201628.

[27] Velecela V, Lettice LA,Chau YY,et al. WT1 regulates the expression of inhibitory chemokines during heart development[J]. Hum Mol Genet,2013,22(25):5083-5095.

[28] Deniset JF,Belke D,Lee WY,et al. Gata6+ Pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis [J]. Immunity,2019,51(1):131-140.e5.

[29] Liu J,Wang H,Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury:a double-edged sword[J]. Clin Med Insights Cardiol,2016,10:79-84.

[30] Stevens SM,von Gise A,VanDusen N,et al. Epicardium is required for cardiac seeding by yolk sac macrophages,precursors of resident macrophages of the adult heart[J]. Dev Biol,2016,413(2):153-159.

[31]van Tuyn J,Atsma DE,Winter EM,et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro[J]. Stem Cells,2007,25(2):271-278.

[32] Bargehr J,Ong LP,Colzani M,et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte- driven heart regeneration[J]. Nat Biotechnol,2019,37(8):895-906.

[33] Moerkamp AT,Lodder K,van Herwaarden T,et al. Human fetal and adult epicardial-derived cells:a novel model to study their activation[J]. Stem Cell Res Ther,2016,7(1):174.

[34] Cao J,Poss KD. Explant culture of adult zebrafish hearts for epicardial regeneration studie s[J]. Nat Protoc,2016,11 (5):872-881.

[35] Zangi L,Lui KO,von Gise A,et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction[J]. Nat Biotechnol,2013,31(10):898-907.

[36] Wei K,Serpooshan V,Hurtado C,et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart[J]. Nature,2015,525(7570):479-485.

[37] Sanz-Morejón A,García-Redondo AB,Reuter H,et al. Wilms tumor 1b expression defines a pro-regenerative macrophage subtype and is required for organ regeneration in the zebrafish[J]. Cell Rep,2019,28(5):1296-1306.e6.

相似文献/References:

[1]陈清勇 辛艳峰 杨庆.改良的“大针套小针”干性心包穿刺术用于心外膜消融通路建立的有效性及安全性研究[J].心血管病学进展,2023,(4):371.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.018]
 CHEN Qingyong,XIN Yanfeng,YANG Qing.Study on the Effectiveness and Safety of Modified Needle in Needle Dry Pericardiocentesis for Epicardial Access[J].Advances in Cardiovascular Diseases,2023,(4):371.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.018]
[2]曾庆跃 徐娇 施奕 牟钘雨 李双庆.心脏发育关键转录因子与心肌细胞直接重编程的研究进展[J].心血管病学进展,2023,(10):934.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.016]
 ZENG QingyueXU JiaoSHI YiMOU XingyuLI Shuangqing.Transcription Factors for Cardiac Development and Direct Cardiac Reprogramming[J].Advances in Cardiovascular Diseases,2023,(4):934.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.016]

备注/Memo

备注/Memo:
基金项目:湖北省技术创新专项(2016ACA153) 通讯作者:黄从新,E-mail:huangcongxin@vip.163.com 收稿时间:2020-10-20
更新日期/Last Update: 2021-07-01