[1]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392-395.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(5):392-395.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
点击复制

糖尿病心肌病血清生物标志物研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年5期
页码:
392-395
栏目:
综述
出版日期:
2021-05-25

文章信息/Info

作者:
马韵之 李剑 周鹏
(复旦大学附属华山医院心内科,上海 200040)
Author(s):
Serum Biomarkers of Diabetic Cardiomyopathy
MA Yunzhi,LI Jian,ZHOU Peng (Department of Cardiology,Huashan Hospital of Fudan UniversityShanghai 200040,China)
关键词:
糖尿病心肌病血清生物标志物miRNA
Keywords:
Diabetic CardiomyopathySerum biomarkermiRNA
DOI:
10.16806/j.cnki.issn.1004-3934.2021.05.002
摘要:
糖尿病心肌病是糖尿病的常见并发症,主要表现为心室舒张或收缩功能障碍,病程进展缓慢,早期诊断较为困难。现总结了包含微小RNA在内的多种血清生物标志物在糖尿病心肌病的诊断和治疗中的研究进展,以期为糖尿病心肌病的早期诊断提供依据。
Abstract:
Diabetic cardiomyopathy is a common complication of diabetes mellitus,mainly manifested as ventricular diastolic or systolic dysfunction. The course of this disease is slow and early diagnosis is difficult.This review summarizes the research progress of serum biomarkers(including microRNAs) in the diagnosis and treatment of diabetic cardiomyopathy t o provide the evidence for the early diagnosis of diabetic cardiomyopathy.

参考文献/References:

[1] Jia G,Hill MA ,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.

[2] Dandamudi S,Slusser J,Mahoney DW,et al. The prevalence of diabetic cardiomyopathy:a population-based study in Olmsted County,Minnesota[J]. J Card Fail,2014,20(5):304-309.

[3] Boudina S,Abel ED. Diabetic cardiomyopathy revisited[J]. Circulation,2007 ,115(25):3213-3223.

[4] Li J,Su S ,Zong X. Analysis of the association between adiponectin,adiponectin receptor 1 and diabetic cardiomyopathy[J]. Exp Ther Med,2014,7(4):1023-1027.

[5] Shaver A,Nichols A,Thompson E,et al. Role of serum biomarkers in early detection of diabetic cardiomyopathy in the West Virginian population[J]. Int J Med Sci,2016 ,13(3):161-168.

[6] 苏仕月,李结华,宗晓娜. 脂联素及脂联素受体1的表达与糖尿病心肌病的关系[J]. 中国循证心血管医学杂志,2014,6(5):562-564.

[7] Shibata R,Ouchi N,Ito M,et al.Adiponectin-mediated modulation of hypertrophic signals in the heart[J]. Nat Med,2004 ,10(12):1384-1389.

[8] Gandhi PU,Gaggin HK,Sheftel AD,et al. Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction:a novel biomarker of myocardial diastolic function?[J]. Am J Cardiol,2014,114(10):1543-1549.

[9] Chen WJY,Greulich S,van der Meer RW,et al. Activin A is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes[J] . Cardiovasc Diabetol,2013 ,12:150.

[10] Blumensatt M,Greulich S,Herzfeld de Wiza D,et al. Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143[J]. Cardiovasc Re s,2013,100(2):201-210.

[11] Liu Z,Zhao N,Zhu H,et al. Circulating interleukin-1β promotes endoplasmic reticulum stress-induced myocytes apoptosis in diabetic cardiomyopathy via interleukin-1 receptor-associated kinase-2[J]. Cardiovasc Diabetol,2015,14:125.

[12] Dominguez-Rodriguez A,Abreu-Gonzalez P,Avanzas P. Usefulness of growth differentiation factor-15 levels to predict diabetic cardiomyopathy in asymptomatic patients with type 2 diabetes mellitus[J]. Am J Cardiol,2014,114(6):890-894.

[13] 刘欢,李艳. 生长分化因子-15在常见心血管疾病中的研究进展[J]. 微循环学杂志, 2017,27(4):68-71.

[14] 孙立娟,齐东旭. 糖尿病心肌病的早期临床诊断[J]. 中国实验诊断学,2010,14(10): 1647-1649.

[15] Korkmaz-Ic?z S,Lehner A,Li S,et al. Left ventricular pressure-volume measurements and myocardial gene expression profile in type-2 diabetic Goto-Kakizaki rats[J]. Am J Physiol Heart Circ Physiol,2016,311(4):H958-H971.

[16] Russell N, Higgins M, Amaruso M,et al. Troponin T and pro-B-type natriuretic Peptide in fetuses of type 1 diabetic mothers [J]. Diabetes Care,2009, 32(11): 2050-2055.

[17] Hoffmann U,Espeter F,Wei? C,et al.Ischemic biomarker heart-type fatty acid binding protein(hFABP) in acute heart failure - d iagnostic and prognostic insights compared to NT-proBNP and troponin I[J]. BMC Cardiovasc Disord,2015 ,15:50.

[18] Akbal E,?zbek M,Güne? F,et al. Serum heart type fatty acid binding protein levels in metabolic syndrome[J]. Endocrine,2009 ,36(3):433-437.

[19] Shearer J,Fueger PT,Wang Z,et al. Metabolic implications of reduced heart-type fatty acid binding protein in insulin resistant cardiac muscle[J]. Biochim Biophys Acta,2008,1782(10):586-592.

[20] Stejskal D,Ruzicka V. Cardiotrophin-1. Review[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2008,152(1):9-19.

[21] Gamella-Pozuelo L,Fuentes-Calvo I,Gómez-Marcos MA,et al. Plasma cardiotrophin-1 as a marker of hypertension and diabetes-induced target organ damage and cardiovascular risk[J]. Medicine(Baltimore),2015,94(30):e1218.

[22] Martínez-Martínez E,Brugnolaro C,Ibarrola J,et al. CT-1(cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation[J]. Hypertension,2019,73(3):602-611.

[23] Sarrazy V,Koehler A,Chow ML,et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction[J]. Cardiovasc Res,2014,102(3):407-417.

[24] Tan SM,Zhang Y,Wang B,et al. FT23,an orally active antifibrotic compound,attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy[J]. Clin Exp Pharmacol Physiol,2012,39(8):650-656.

[25] Iaccarino G,Barbato E,Cipolletta E,et al. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure[J]. Eur Heart J,2005,26(17):1752-1758.

[26] Lai S,Fu X,Yang S,et al. G protein-coupled receptor kinase-2:a potential biomarker for early diabetic cardiomyopathy[J]. J Diabetes,2020 ,12(3):247-258.

[27] Chen Y,Xu F,Zhang L,et al. GRK2/β-arrestin mediates arginine vasopressin-induced cardiac fibroblast proliferation[J]. Clin Exp Pharmacol Physiol,2017,44(2):285-293.

[28] Ihm SH,Youn HJ,Shin DI,et al. Serum carboxy-terminal propeptide of type I procollagen(PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus[J]. Int J Cardiol,2007,122(3):e36-e38.

[29] Quilliot D,Alla F,B?hme P,et al. Myocardial collagen turnover in normotensive obese patients:relation to insulin resistance[J]. Int J Obes (Lond),2005,29(11):1321-1328.

[30] Visse R,Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure,function,and biochemistry[J]. Circ Res,2003,92(8):827-839.

[31] van Linthout S,Seeland U,Riad A,et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy[J]. Basic Res Cardiol,2008,103(4):319-327.

[32] Ban CR,Twigg SM,Franjic B,et al. Serum MMP-7 is increased in diabetic renal disease and diabetic diastolic dysfunction[J]. Diabetes Res Clin Pract,2010 ,87(3):335-341.

[33] Yao S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation[J]. Biol Proced Online,2016,18:8.

[34] Tao L,Huang X,Xu M,et al. Value of circulating miRNA-21 in the diagnosis of subclinical diabetic cardiomyopathy[J]. Mol Cell Endocrinol,2020 ,518:110944.

[35] Wen P,Song D,Ye H,et al. Circulating MiR-133a as a biomarker predicts cardiac hypertrophy in chronic hemodialysis patients[J]. PLoS One,2014,9(10):e103079.

[36] Chen S,Puthanveetil P,Feng B,et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes[J]. J Cell Mol Med,2014,18(3):415-421.

[37] Copier CU,León L,Fernández M,et al. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy[J]. Sci Rep,2017,7(1):13514.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(5):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(5):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(5):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(5):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(5):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(5):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(5):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(5):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
[10]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
 WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(5):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]

更新日期/Last Update: 2021-06-16