[1]孙硕 康品方 张恒.外泌体miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2021,(3):224-227.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.008]
 SUN Shuo,KANG Pinfang,ZHANG Heng.Research Progress of Exosomes-derived miRNAs in Myocardial Pathology[J].Advances in Cardiovascular Diseases,2021,(3):224-227.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.008]
点击复制

外泌体miRNAs在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年3期
页码:
224-227
栏目:
出版日期:
2021-03-25

文章信息/Info

Title:
Research Progress of Exosomes-derived miRNAs in Myocardial Pathology
作者:
孙硕1 康品方12 张恒1
蚌埠医学院第一附属医院心血管内科,安徽 蚌埠 233004 ;2. 蚌埠医学院心脑血管病研究中心,安徽 蚌埠 233000 )
Author(s):
SUN Shuo1 KANG Pinfang12 ZHANG Heng1
(1.Department of Cardiology,The First Affiliated Hospital of Bengbu Medical College,Bengbu 233000,Anhui,China; 2. Cardiovascular and Cerebrovascular Disease Research Center,Bengbu Medical College,Bengbu 233000,Anhui,China)
关键词:
font-size: 10.5pt">外泌体 font-size: 10.5pt"> font-size: 10.5pt">胞外囊泡 font-size: 10.5pt"> font-size: 10.5pt">心肌梗死 font-size: 10.5pt"> font-size: 10.5pt">心室重塑
Keywords:
Exosomes Extracellular vesicleMyocardial infarctionMyocardial remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2021.03.008
摘要:
外泌体是细胞分泌出的含有蛋白质、脂质 RNA 等多种生物活性物质,是一种远距离传输生物学信息的载体 miRNA 是内源性非编码 RNA ,与靶 mRNA 结合 形成翻译阻遏,实现对基因表达的调控,从而参与细胞的生长分化、凋亡甚至癌变等病理生理过程 外泌体 miRNA 在疾病诊断 疗效预测等方面具有突出优势, 将外泌体 源性 miRNA 心血管疾病 中的研究进展进行简要概述。
Abstract:
Exosomes,which contain proteins,lipids,RNA and other bioactive substances secreted by cells,are carriers of long-distance biological information transmission. miRNAs are endogenous non-coding RNAs that combine with target mRNAs to form translational repressions to achieve regulation of gene expression,thereby participating in pathophysiological processes such as cell differentiation,apoptosis,and even canceration. Exosome-derived miRNAs have outstanding advantages in disease diagnosis and efficacy prediction.This article briefly summarizes the research progress of exosome-derived miRNAs during cardiovascular diseases

参考文献/References:

[1] Mori MA,Ludwig RG,Garcia-Martin R,et al. Extracellular miRNAs:from biomarkers to mediators of physiology and disease[J]. Cell Metab,2019,30(4):656-673.

[2] Chen L,Wang Y,Pan Y,et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury[J]. Biochem Biophys Res Commun,2013,431(3):566-571.

[3] Yu H,Wang Z. Cardiomyocyte-derived exosomes:biological functions and potential therapeutic implications[J]. Front Physiol,2019,10:1049.

[4] Johnstone RM,Adam M,Hammond JR,et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem,1987,262(19):9412-9420.

[5] Valadi H,Ekstr?m K,Bossios A,et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659.

[6] 张维,张恒,康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,40(5):818-821.

[7] Kapustin AN,Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation[J]. J Physiol,2016,594(11):2905-2914.

[8] Yang W,Zou B,Hou Y,et al. Extracellular vesicles in vascular calcification[J]. Clin Chim Acta,2019,499:118-122.

[9] Wang Y,Ma W,Zhu Y ,et al. Exosomes derived from mesenchymal stromal cells pretreated with advanced glycation end product-bovine serum albumin inhibit calcification of vascular smooth muscle cells[J]. Front Endocrinol (Lausanne),2018,9:524.

[10] Gu J,Zhang H,Ji B,et al. Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells[J].Sci Rep,2017,7:43546.

[11] New SE P,Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification[J]. Arterioscler Thromb Vasc Biol,2013,33(8):1753-1758.

[12] Chen NX,Moe SM. Vascular calcification:pathophysiology and risk factors[J]. Curr Hypertens Rep,2012,14(3):228-237.

[13] Li C,Li S,Zhang F,et al. Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice[J]. Biochem Biophys Res Commun,2018,495(2):1922-1929.

[14] Zernecke A,Bidzhekov K,Noels H,et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J]. Sci Signal,2009,2(100):ra81.

[15] Hergenreider E,Heydt S,Tréguer K,et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256.

[16] Pan W,Liang J,Tang H,et al. Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification[J]. Int J Biochem Cell Biol,2020,118:105645.

[17] Kaur A,Mackin ST,Schlosser K,et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease[J]. Cardiovasc Res,2020,116(6):1113-1124.

[18] Ong SG,Lee WH,Huang M,et al. Cross talk of combined gene and cell therapy in ischemic heart disease:role of exosomal microRNA transfer[J]. Circulation,2014,130(11 suppl 1):S60-S69.

[19] Gray WD,French KM,Ghosh-Choudhary S,et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology[J]. Circ Res,2015,116(2):255-263.

[20] Chaturvedi P,Kalani A,Medina I,et al. Cardiosome mediated regulation of MMP9 in diabetic heart:role of mir29b and mir455 in exercise[J]. J Cell Mol Med,2015,19(9):2153-2161.

[21] Li J,Rohailla S,Gelber N,et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning[J]. Basic Res Cardiol,2014,109(5):423.

[22] Li J,Xuan W,Yan R,et al. Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of β-catenin[J]. Clin Sci(Lond),2011,120(10):451-462.

[23]Zhang J,Pan J,Yang M,et al. Upregulating microRNA-203 alleviates myocardial remodeling and cell apoptosis through downregulating protein tyrosine phosphatase 1B in rats with myocardial infarction[J]. Cardiovasc Pharmacol,2019,74(5):474-481.

[24] Li C,Pei F,Zhu X,et al. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction[J]. Clin Biochem,2012,45(10-11):727-732.

[25] Yang Y,Li Y,Chen X,et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med,2016,94 (6):711-724.

[26] Yang J,Yu X,Xue F,et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast crosstalk[J]. Am J Transl Res,2018,10(12):4350-4366.

[27] Zhang J,Ma J,Long K,et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis[J]. Int J Mol Sci,2018,18(4):711.

[28] Qiao L,Hu S,Liu S,et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest,2019,129(6):2237-2250.

[29] Cervio E,Barile L,Moccetti T,et al. Exosomes for intramyocardial intercellular communication[J]. Stem Cells Int,2015,2015:482171.

[30] Bang C,Batkai S,Dangwal S,et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest,2014,124(5): 2136-2146.

[31] Wang S,Min J,Yu Y,et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm[J]. J Thorac Dis,2019,11(10):4337-4348.

[32] de Giusti CJ,Santalla M,Das S. Exosomal non-coding RNAs(Exo-ncRNAs) in cardiovascular health[J]. J Mol Cell Cardiol,2019,137:143-151.

相似文献/References:

[1]贺佳琪 王琳鑫 曹阳 田野.( 动脉粥样硬化斑块内出血影像学检查技术进展[J].心血管病学进展,2020,(11):1148.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2020.11.000]
 HE Jiaqi,WANG Linxin,CAO Yang,et al.Atherosclerosis Intraplaque Hemorrhage[J].Advances in Cardiovascular Diseases,2020,(3):1148.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2020.11.000]

更新日期/Last Update: 2021-05-27