参考文献/References:
[1] Wei R,Feng Y. Noncoding RNA in the regulation of acute aortic dissection:from profile to mechanism[J]. Cardiovasc Ther,2022,2022:2371401.
[2] Song Z,Gao R,Yan B. Potential roles of microRNA-1 and microRNA-133 in cardiovascular disease[J]. Rev Cardiovasc Med,2020,21(1):57-64.
[3] Vishnoi A,Rani S. miRNA biogenesis and regulation of diseases:an updated overview[J]. Methods Mol Biol,2023,2595:1-12.
[4] Cirillo F,Catellani C,Lazzeroni P,et al. The role of microRNAs in influencing body growth and development[J]. Horm Res Paediatr,2020,93(1):7-15.
[5] Radwan E,Shaltout AS,Mansor SG,et al. Evaluation of circulating microRNAs-211 and 25 as diagnostic biomarkers of colorectal cancer[J]. Mol Biol Rep,2021,48(5):4601-4610.
[6] Zhu H,Leung SW. MicroRNA biomarkers of type 2 diabetes:evidence synthesis from meta-analyses and pathway modelling[J]. Diabetologia,2023,66(2):288-299.
[7] Raucci A,Macrì F,Castiglione S,et al. MicroRNA-34a:the bad guy in age-related vascular diseases[J]. Cell Mol Life Sci,2021,78(23):7355-7378.
[8] O’Brien J,Hayder H,Zayed Y,et al. Overview of microRNA biogenesis,mechanisms of actions,and circulation[J]. Front Endocrinol (Lausanne),2018,9:402.
[9] Yuan X,Mitsis A,Nienaber CA. Current understanding of aortic dissection[J]. Life (Basel),2022,12(10):1606.
[10] Baman JR,Malaisrie SC. What is aortic dissection?[J]. JAMA,2023,330(2):198.
[11] Akutsu K. Etiology of aortic dissection[J]. Gen Thorac Cardiovasc Surg,2019,67(3):271-276.
[12] Witsch J,Mir SA,Parikh NS,et al. Association between cervical artery dissection and aortic dissection[J]. Circulation,2021,144(10):840-842.
[13] Farag M,Büsch C,Rylski B,et al. Early outcomes of patients with Marfan syndrome and acute aortic type A dissection[J]. J Thorac Cardiovasc Surg,2023,166(1):25-34.e8.
[14] Goyal A,Jain H,Usman M,et al. A comprehensive exploration of novel biomarkers for the early diagnosis of aortic dissection[J]. Hellenic J Cardiol,2024 Jun 21:S1109-9666(24)00130-1. DOI: 10.1016/j.hjc.2024.06.006. Epub ahead of print.
[15] Liu LW,Cui YK,Zhang L,et al. Effectiveness of chest pain center accreditation on the hospital outcome of acute aortic dissection:a nationwide study in China[J]. Mil Med Res,2024,11(1):62.
[16] Bunce C,Bryczkowski C,Rometti M. Aortic dissection case report[J]. J Educ Teach Emerg Med,2023,8(1):V5-V10.
[17] Mazzolai L,Alatri A,Rivière AB,et al. Progress in aorta and peripheral cardiovascular disease research[J]. Cardiovasc Res,2021,117(9):2045-2053.
[18] Gao JP,Guo W. Mechanisms of abdominal aortic aneurysm progression:a review[J]. Vasc Med,2022,27(1):88-96.
[19] Xiao Y,Sun Y,Ma X,et al. MicroRNA-22 inhibits the apoptosis of vascular smooth muscle cell by targeting p38MAPKα in vascular remodeling of aortic dissection[J]. Mol Ther Nucleic Acids,2020,22:1051-1062.
[20] Yang P,Wu P,Liu X,et al. MiR-26b suppresses the development of Stanford type a aortic dissection by regulating HMGA2 and TGF-β/Smad3 signaling pathway[J]. Ann Thorac Cardiovasc Surg,2020,26(3):140-150.
[21] Shi J,Yang Y,Cheng A,et al. Metabolism of vascular smooth muscle cells in vascular diseases[J]. Am J Physiol Heart Circ Physiol,2020,319(3):H613-H631.
[22] Chakraborty A,Li Y,Zhang C,et al. Epigenetic induction of smooth muscle cell phenotypic alterations in aortic aneurysms and dissections[J]. Circulation,2023,148(12):959-977.
[23] Li T,Liu C,Liu L,et al. Regulatory mechanism of microRNA-145 in the pathogenesis of acute aortic dissection[J]. Yonsei Med J,2019,60(4):352-359.
[24] Huang W,Huang C,Ding H,et al. Involvement of miR-145 in the development of aortic dissection via inducing proliferation,migration,and apoptosis of vascular smooth muscle cells[J]. J Clin Lab Anal,2020,34(1):e23028.
[25] Qiu ZH,He J,Chai TC,et al. MiR-145 attenuates phenotypic transformation of aortic vascular smooth muscle cells to prevent aortic dissection[J]. J Clin Lab Anal,2021,35(12):e23773.
[26] de Almeida LGN,Thode H,Eslambolchi Y,et al. Matrix metalloproteinases:from molecular mechanisms to physiology,pathophysiology,and pharmacology[J]. Pharmacol Rev,2022,74(3):712-768.
[27] Serra R. Matrix metalloproteinases in health and disease[J]. Biomolecules,2020,10(8):1138.
[28] Maguire EM,Pearce SWA,Xiao R,et al. Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection[J]. Pharmaceuticals (Basel),2019,12(3):118.
[29] Wang X,Khalil RA. Matrix metalloproteinases,vascular remodeling,and vascular disease[J]. Adv Pharmacol,2018,81:241-330.
[30] Liao M,Zou S,Bao Y,et al. Matrix metalloproteinases are regulated by microRNA 320 in macrophages and are associated with aortic dissection[J]. Exp Cell Res,2018,370(1):98-102.
[31] Al-U’datt D,Allen BG,Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease[J]. Cardiovasc Res,2019,115(13):1820-1837.
[32] Lu M,Qin X,Yao J,et al. Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression[J]. Acta Physiol(Oxf),2020,230(3):e13537.
[33] Yu Y,Shi E,Gu T,et al. Overexpression of microRNA-30a contributes to the development of aortic dissection by targeting lysyl oxidase[J]. J Thorac Cardiovasc Surg,2017,154(6):1862-1869.
[34] Zhang X,Che Y,Mao L,et al. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation[J]. Genomics,2023,115(5):110685.
[35] Xie Y,Xie L,Qiu Z,et al. MiR-485-3p targets SIRT1 in vascular smooth muscle cells mediating the occurrence of aortic dissection[J]. J Cell Mol Med,2024,28(13):e18454.
[36] Grillet B,Pereira RVS,van Damme J,et al. Matrix metalloproteinases in arthritis:towards precision medicine[J]. Nat Rev Rheumatol,2023,19(6):363-377.
[37] HAO X,CHENG S,JIANG B,et al. Applying multi-omics techniques to the discovery of biomarkers for acute aortic dissection[J]. Front Cardiovasc Med,2022,9:961991.
[38] El-Abd YJ,Hagspiel KD. Review of imaging with focus on new techniques in aortic dissection[J]. Tech Vasc Interv Radiol,2021,24(2):100748.
[39] Chen H,Li Y,Li Z,et al. Diagnostic biomarkers and aortic dissection:a systematic review and meta-analysis[J]. BMC Cardiovasc Disord,2023,23(1):497.
相似文献/References:
[1]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(2):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[2]夏平.“8+2”心电图临床价值的研究进展夏平[J].心血管病学进展,2021,(9):800.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2021.09.009]
XIA Ping.Clinical Value of 8 Plus 2 ECG[J].Advances in Cardiovascular Diseases,2021,(2):800.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2021.09.009]
[3]郭俊林 顾永林 彭勇.氟喹诺酮类药物增加主动脉瘤和夹层风险的研究进展[J].心血管病学进展,2023,(2):155.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.013]
GUO Junlin,GU Yonglin,PENG Yong.Fluoroquinolones Increased Risk of Aortic Aneurysm and Dissection[J].Advances in Cardiovascular Diseases,2023,(2):155.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.013]
[4]李旭 王志维.CTRP2与主动脉夹层发生的相关性研究[J].心血管病学进展,2024,(5):476.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.020]
LI Xu,WANG Zhiwei.Correlation Between CTRP2 and the Occurrence of Aortic Dissection[J].Advances in Cardiovascular Diseases,2024,(2):476.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.020]
[5]温欢 张琼阁 刘金波 王宏宇,7.主动脉夹层临床早期评价技术最新进展[J].心血管病学进展,2024,(8):707.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.008]
WEN Huan,ZHANG Qiongge,LIU Jinbo,et al.Early Clinical Evaluation Techniques for Aortic Dissection[J].Advances in Cardiovascular Diseases,2024,(2):707.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.008]
[6]黄延鑫 姚园 吴星亮 刘力源 易欣.血管平滑肌细胞程序性死亡在主动脉夹层中的研究进展与展望[J].心血管病学进展,2024,(8):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
HUANG YanxinYAO YuanWU XingliangLIU LiyuanYI Xin.Progress and Perspectives of Programmed Vascular Smooth Muscle Cell Death?n Aortic Coarctation[J].Advances in Cardiovascular Diseases,2024,(2):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
[7]李蓝鸽 郑雅璇 吕婷婷 李锟 孔令云 周博达 刘芳 张萍 薛亚军.微RNA在冠状动脉微栓塞后心肌损伤的研究进展[J].心血管病学进展,2024,(8):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
LI Lange,ZHENG Yaxuan,LYU Tingting,et al.MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation[J].Advances in Cardiovascular Diseases,2024,(2):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
[8]汪小娣 赵新艳 周涛.炎症在主动脉夹层发病及预后作用中的研究进展[J].心血管病学进展,2025,(2):133.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.009]
WANG Xiaodi,ZHAO Xinyan,ZHOU Tao.Role of Inflammation in the Pathogenesis and Prognosis of Aortic Dissection[J].Advances in Cardiovascular Diseases,2025,(2):133.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.009]
[9]于超 许文胜 贾小娥 刘锦龙 刘友 王艳芳 王崴 徐宏蕊 张涛.微RNA-细胞焦亡信号轴调控心肌缺血再灌注损伤的研究进展[J].心血管病学进展,2025,(2):141.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.011]
YU Chao,XU Wensheng,JIA Xiaoe,et al.MicroRNA Cell Poptosis Signaling Axis Regulation of Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2025,(2):141.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.011]