[1]于冰 郝春华 刘杰 张津溢 王维亭.心力衰竭动物模型的分子细胞机制与非编码RNA干预[J].心血管病学进展,2025,(2):147.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.012]
 YU Bing,HAO Chunhua,LIU Jie,et al.Molecular Cellular Mechanisms and Non-coding RNA Intervention in Animal Model of Heart Failure[J].Advances in Cardiovascular Diseases,2025,(2):147.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.012]
点击复制

心力衰竭动物模型的分子细胞机制与非编码RNA干预()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年2期
页码:
147
栏目:
综述
出版日期:
2025-02-25

文章信息/Info

Title:
Molecular Cellular Mechanisms and Non-coding RNA Intervention in Animal Model of Heart Failure
作者:
于冰1 郝春华2 刘杰2 张津溢2 王维亭2
国家药品监督管理局药品审评中心,北京100022;2.天津维佳医药科技有限公司,天津300192)
Author(s):
YU Bing1HAO Chunhua2LIU Jie2ZHANG Jinyi2WANG Weiting2
(1. Center for Drug Evaluation ,National Medical Products Administration,Beijing 100022,China2. Tianjin Winhonour Medtech Co.,LTD,Tianjin 300192,China)
关键词:
心力衰竭动物模型分子细胞机制非编码RNA
Keywords:
Heart failureAnimal modelsMolecular cellular mechanismsNon-coding RNA
DOI:
10.16806/j.cnki.issn.1004-3934.2025.02.012
摘要:
心力衰竭是一种复杂的临床综合征,被认为是不可逆的临床过程。临床前动物模型的疾病机制研究可为心力衰竭新型治疗药物的研发提供有力支撑。现按照病因对导致心肌损伤与负荷异常两大方面心力衰竭模型发生的分子细胞机制进行综述,并对新型非编码RNA对其干预进行阐述,为心力衰竭新型先进疗法产品设计与研发提供参考。
Abstract:
Heart failure is a complex clinical syndrome that is considered an irreversible clinical process. The study of disease mechanisms in preclinical animal models can provide strong support for the research and development of new drugs for heart failure. In this article ,we review the molecular and cellular mechanisms that lead to myocardial damage and abnormal load according to the etiology,and elaborate on the molecular development of novel non-coding RNA targets,to provide a reference for the development of advanced therapy medicinal products in heart failure.

参考文献/References:

[1].Virani SS,Alonso A,Aparicio HJ,et al. Heart disease and stroke statistics-2021 update:a report from the American Heart Association[J]. Circulation,2021,143:e254-e743.
[2].Hao G,Wang X,Chen Z,et al. Prevalence of heart failure and left ventricular dysfunction in China:the China hypertension Survey,2012-2015[J]. Eur J Heart Fail,2019,21:1329-1337.
[3].王华,刘宇佳,杨杰孚. 心力衰竭流行病学[J]. 临床心血管病杂志,2023,39(4):243-247.
[4].Savarese G,Becher PM,Lund LH,et al. Global burden of heart failure:a comprehensive and updated review of epidemiology[J]. Cardiovasc Res,2023,118(17):3272-3287.
[5].Marin W,Marin D,Ao X,et al. Mitochondria as a therapeutic target for cardiac ischemia?reperfusion injury(Review)[J]. Int J Mol Med,2021,47(2):485-499.
[6].Zhang L,Xie F,Zhang F,et al. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy:a review[J]. Medicine (Baltimore),2024,103(17):e37994.
[7].Triposkiadis F,Xanthopoulos A,Bargiota A,et al. Diabetes mellitus and heart failure[J]. J Clin Med,2021,10(16):3682.
[8].Linders AN,Dias IB,López Fernández T,et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging[J]. NPJ Aging,2024,10(1):9.
[9].Gomes CPC,Schroen B,Kuster GM,et al. Regulatory RNAs in heart failure[J]. Circulation,2020,141(4):313-328.
[10].Sygitowicz G,Maciejak-Jastrz?bska A,Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure[J]. Pol Arch Intern Med,2020,130(1):59-65.
[11].Laggerbauer B,Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease[J]. J Clin Invest,2022,132(11):e159179.
[12].Zaccagnini G,Greco S,Voellenkle C,et al. miR-210 hypoxamiR in angiogenesis and diabetes[J]. Antioxid Redox Signal,2022,36(10-12):685-706.
[13].Li H,Zhan J,Chen C,et al. MicroRNAs in cardiovascular diseases[J]. Med Rev(2021),2022,2(2):140-168.
[14].Hua CC,Liu XM,Liang LR,et al. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J]. Front Cardiovasc Med,2022,8:784044.
[15].Chen Y,Li S,Zhang Y,et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics[J]. Redox Biol,2021,41:101910.
[16].Chang WT,Shih JY,Lin YW,et al. miR-21 upregulation exacerbates pressure overload-induced cardiac hypertrophy in aged hearts[J]. Aging (Albany NY),2022,14(14):5925-5945.
[17].Wang H,Shi J,Wang J,et al. MicroRNA?378:an important player in cardiovascular diseases(Review)[J]. Mol Med Rep,2023,28(3):172.
[18].Zhao X,Wang Y,Sun X. The functions of microRNA-208 in the heart[J]. Diabetes Res Clin Pract,2020,160:108004.
[19].Li N,Zhou H,Tang Q. miR-133:a suppressor of cardiac remodeling?[J]. Front Pharmacol,2018,9:903 .
[20].Raso A,Dirkx E,Philippen LE,et al. Therapeutic delivery of miR-148a suppresses ventricular dilation in heart failure[J]. Mol Ther,2019,27(3):584-599.
[21].He J,Lu Y,Song X,et al. Inhibition of microRNA-146a attenuated heart failure in myocardial infarction rats[J]. Biosci Rep,2019,39(12):BSR20191732.
[22].Sassi Y,Avramopoulos P,Ramanujam D,et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J]. Nat Commun,2017,8(1):1614.
[23].Chu Q,Li A,Chen X,et al. Overexpression of miR-135b attenuates pathological cardiac hypertrophy by targeting CACNA1C[J]. Int J Cardiol,2018,269:235-241.
[24].Liu K,Hao Q,Wei J,et al. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A[J]. J Hypertens,2018,36(9):1847-1857.
[25].Ramasamy S,Velmurugan G,Rekha B,et al. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy[J]. Exp Cell Res,2018,365(1):46-56.
[26].Bao Q,Zhao M,Chen L,et al. MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor[J]. Life Sci,2017,175:1-10.
[27].Xu Y,Luo Y,Liang C,et al. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis[J]. J Mol Cell Cardiol,2020,139:47-61.
[28].Luo Y,Xu Y,Liang C,et al. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin[J]. Cell Signal,2018,43:11-20.
[29].Liu L,Zhang D,Li Y. LncRNAs in cardiac hypertrophy:from basic science to clinical application[J]. J Cell Mol Med,2020,24(20):11638-11645.
[30].Wang Z,Zhang XJ,Ji YX,et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy[J]. Nat Med,2016,22(10):1131-1139.
[31].Viereck J,Kumarswamy R,Foinquinos A,et al. Long noncoding RNA Chast promotes cardiac remodeling[J]. Sci Transl Med,2016,8(326):326ra22.
[32].Chen Y,Liu X,Chen L,et al. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p[J]. Biochem Biophys Res Commun,2018,505(3):807-815.
[33].Lv L,Li T,Li X,et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214[J]. Mol Ther Nucleic Acids,2018,10:387-397.
[34].Li Z,Liu Y,Guo X,et al. Long noncoding RNA myocardial infarction?associated transcript is associated with the microRNA?150?5p/P300 pathway in cardiac hypertrophy[J]. Int J Mol Med,2018,42(3):1265-1272.
[35].Li H,Xu JD,Fang XH,et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4[J]. Cardiovasc Res,2020,116(7):1323-1334.
[36].Xu QR,Liu JL,Zhu RR,et al. NSD2 promotes pressure overload-induced cardiac hypertrophy via activating circCmiss1/TfR1/ferroptosis signaling[J]. Life Sci,2023,328:121873.
[37].Zuo H,Li L,Wang X,et al. A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway[J]. Hypertens Res,2023,46(2):421-436.
[38].Fang X,Ao X,Xiao D,et al. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis[J]. Cell Mol Biol Lett,2024,29(1):3.
[39].Meng Y,Hu Z,Zhang C,et al. miR-92a-3p regulates ethanol-induced apoptosis in H9c2 cardiomyocytes[J]. Cell Stress Chaperones,2024,29(3):381-391.
[40].Jayawardena E,Medzikovic L,Ruffenach G,et al. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy[J]. Int J Mol Sci,2022,23(3):1512.
[41].Wang X,Zhang T,Zhai J,et al. MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression[J]. Biosci Rep,2023,43(9):BSR20230014.
[42].Zhang B,Mao S,Liu X,et al. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure[J]. Mol Med,2021,27(1):72.
[43].Sun B,Liu S,Hao R,et al. RGD-PEG-PLA delivers miR-133 to infarct lesions of acute myocardial infarction model rats for cardiac protection[J]. Pharmaceutics,2020,21;12(6):575.
[44].Li X,Zhong J,Zeng Z,et al. MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway[J]. Cardiovasc Diagn Ther,2020,10(4):849-858.
[45].Garikipati VNS,Verma SK,Cheng Z,et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun,2019,10(1):4317.
[46].Zhang Y,Chen B. Silencing circ_0062389 alleviates cardiomyocyte apoptosis in heart failure rats via modulating TGF-β1/Smad3 signaling pathway[J]. Gene,2021,766:145154.
[47].Chen Y,Li X,Li B,et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling[J]. Mol Ther,2019,27(1):29-45.
[48].Si X,Zheng H,Wei G,et al. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a[J]. Mol Ther Nucleic Acids,2020,21:636-655.
[49].Zhang M,Wang Z,Cheng Q,et al. Circular RNA(circRNA) CDYL induces myocardial regeneration by ceRNA after myocardial infarction[J]. Med Sci Monit,2020,26:e923188.
[50].Zhao P,Wang Y,Zhang L,et al. Mechanism of long noncoding RNA metastasisassociated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure[J]. Int J Mol Med,2021,47(3):5.
[51].Ge Z,Yin C,Li Y,et al. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region[J]. J Transl Med,2022,20(1):7.
[52].Ou Y,Liao C,Li H,et al. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure[J]. IUBMB Life,2020,72(11):2469-2480.
[53].Zhang M,Zhang B,Wang X,et al. LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis[J]. Sci China Life Sci,2023,66(4):783-799.
[54].Jeong A,Lim Y,Kook T,et al. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts [J]. Mol Ther Nucleic Acids,2023,34:102071.
[55].Detela G,Lodge A. EU regulatory pathways for ATMPs:standard,accelerated and adaptive pathways to marketing authorisation[J]. Mol Ther Methods Clin Dev,2019,13:205-232.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(2):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(2):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(2):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(2):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(2):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(2):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]游月婷 黄刚 张小刚 张亚丽 邓自刚 屈树新 靳忠民 徐俊波.心力衰竭动物建模的进展[J].心血管病学进展,2021,(12):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
 YOU YuetingHUANG Gang,ZHANG Xiaogang,ZHANG Yali,et al.Animal Models Establishment of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(2):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]

更新日期/Last Update: 2025-03-11