参考文献/References:
[1].Virani SS,Alonso A,Aparicio HJ,et al. Heart disease and stroke statistics-2021 update:a report from the American Heart Association[J]. Circulation,2021,143:e254-e743.
[2].Hao G,Wang X,Chen Z,et al. Prevalence of heart failure and left ventricular dysfunction in China:the China hypertension Survey,2012-2015[J]. Eur J Heart Fail,2019,21:1329-1337.
[3].王华,刘宇佳,杨杰孚. 心力衰竭流行病学[J]. 临床心血管病杂志,2023,39(4):243-247.
[4].Savarese G,Becher PM,Lund LH,et al. Global burden of heart failure:a comprehensive and updated review of epidemiology[J]. Cardiovasc Res,2023,118(17):3272-3287.
[5].Marin W,Marin D,Ao X,et al. Mitochondria as a therapeutic target for cardiac ischemia?reperfusion injury(Review)[J]. Int J Mol Med,2021,47(2):485-499.
[6].Zhang L,Xie F,Zhang F,et al. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy:a review[J]. Medicine (Baltimore),2024,103(17):e37994.
[7].Triposkiadis F,Xanthopoulos A,Bargiota A,et al. Diabetes mellitus and heart failure[J]. J Clin Med,2021,10(16):3682.
[8].Linders AN,Dias IB,López Fernández T,et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging[J]. NPJ Aging,2024,10(1):9.
[9].Gomes CPC,Schroen B,Kuster GM,et al. Regulatory RNAs in heart failure[J]. Circulation,2020,141(4):313-328.
[10].Sygitowicz G,Maciejak-Jastrz?bska A,Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure[J]. Pol Arch Intern Med,2020,130(1):59-65.
[11].Laggerbauer B,Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease[J]. J Clin Invest,2022,132(11):e159179.
[12].Zaccagnini G,Greco S,Voellenkle C,et al. miR-210 hypoxamiR in angiogenesis and diabetes[J]. Antioxid Redox Signal,2022,36(10-12):685-706.
[13].Li H,Zhan J,Chen C,et al. MicroRNAs in cardiovascular diseases[J]. Med Rev(2021),2022,2(2):140-168.
[14].Hua CC,Liu XM,Liang LR,et al. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J]. Front Cardiovasc Med,2022,8:784044.
[15].Chen Y,Li S,Zhang Y,et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics[J]. Redox Biol,2021,41:101910.
[16].Chang WT,Shih JY,Lin YW,et al. miR-21 upregulation exacerbates pressure overload-induced cardiac hypertrophy in aged hearts[J]. Aging (Albany NY),2022,14(14):5925-5945.
[17].Wang H,Shi J,Wang J,et al. MicroRNA?378:an important player in cardiovascular diseases(Review)[J]. Mol Med Rep,2023,28(3):172.
[18].Zhao X,Wang Y,Sun X. The functions of microRNA-208 in the heart[J]. Diabetes Res Clin Pract,2020,160:108004.
[19].Li N,Zhou H,Tang Q. miR-133:a suppressor of cardiac remodeling?[J]. Front Pharmacol,2018,9:903 .
[20].Raso A,Dirkx E,Philippen LE,et al. Therapeutic delivery of miR-148a suppresses ventricular dilation in heart failure[J]. Mol Ther,2019,27(3):584-599.
[21].He J,Lu Y,Song X,et al. Inhibition of microRNA-146a attenuated heart failure in myocardial infarction rats[J]. Biosci Rep,2019,39(12):BSR20191732.
[22].Sassi Y,Avramopoulos P,Ramanujam D,et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J]. Nat Commun,2017,8(1):1614.
[23].Chu Q,Li A,Chen X,et al. Overexpression of miR-135b attenuates pathological cardiac hypertrophy by targeting CACNA1C[J]. Int J Cardiol,2018,269:235-241.
[24].Liu K,Hao Q,Wei J,et al. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A[J]. J Hypertens,2018,36(9):1847-1857.
[25].Ramasamy S,Velmurugan G,Rekha B,et al. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy[J]. Exp Cell Res,2018,365(1):46-56.
[26].Bao Q,Zhao M,Chen L,et al. MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor[J]. Life Sci,2017,175:1-10.
[27].Xu Y,Luo Y,Liang C,et al. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis[J]. J Mol Cell Cardiol,2020,139:47-61.
[28].Luo Y,Xu Y,Liang C,et al. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin[J]. Cell Signal,2018,43:11-20.
[29].Liu L,Zhang D,Li Y. LncRNAs in cardiac hypertrophy:from basic science to clinical application[J]. J Cell Mol Med,2020,24(20):11638-11645.
[30].Wang Z,Zhang XJ,Ji YX,et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy[J]. Nat Med,2016,22(10):1131-1139.
[31].Viereck J,Kumarswamy R,Foinquinos A,et al. Long noncoding RNA Chast promotes cardiac remodeling[J]. Sci Transl Med,2016,8(326):326ra22.
[32].Chen Y,Liu X,Chen L,et al. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p[J]. Biochem Biophys Res Commun,2018,505(3):807-815.
[33].Lv L,Li T,Li X,et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214[J]. Mol Ther Nucleic Acids,2018,10:387-397.
[34].Li Z,Liu Y,Guo X,et al. Long noncoding RNA myocardial infarction?associated transcript is associated with the microRNA?150?5p/P300 pathway in cardiac hypertrophy[J]. Int J Mol Med,2018,42(3):1265-1272.
[35].Li H,Xu JD,Fang XH,et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4[J]. Cardiovasc Res,2020,116(7):1323-1334.
[36].Xu QR,Liu JL,Zhu RR,et al. NSD2 promotes pressure overload-induced cardiac hypertrophy via activating circCmiss1/TfR1/ferroptosis signaling[J]. Life Sci,2023,328:121873.
[37].Zuo H,Li L,Wang X,et al. A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway[J]. Hypertens Res,2023,46(2):421-436.
[38].Fang X,Ao X,Xiao D,et al. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis[J]. Cell Mol Biol Lett,2024,29(1):3.
[39].Meng Y,Hu Z,Zhang C,et al. miR-92a-3p regulates ethanol-induced apoptosis in H9c2 cardiomyocytes[J]. Cell Stress Chaperones,2024,29(3):381-391.
[40].Jayawardena E,Medzikovic L,Ruffenach G,et al. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy[J]. Int J Mol Sci,2022,23(3):1512.
[41].Wang X,Zhang T,Zhai J,et al. MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression[J]. Biosci Rep,2023,43(9):BSR20230014.
[42].Zhang B,Mao S,Liu X,et al. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure[J]. Mol Med,2021,27(1):72.
[43].Sun B,Liu S,Hao R,et al. RGD-PEG-PLA delivers miR-133 to infarct lesions of acute myocardial infarction model rats for cardiac protection[J]. Pharmaceutics,2020,21;12(6):575.
[44].Li X,Zhong J,Zeng Z,et al. MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway[J]. Cardiovasc Diagn Ther,2020,10(4):849-858.
[45].Garikipati VNS,Verma SK,Cheng Z,et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun,2019,10(1):4317.
[46].Zhang Y,Chen B. Silencing circ_0062389 alleviates cardiomyocyte apoptosis in heart failure rats via modulating TGF-β1/Smad3 signaling pathway[J]. Gene,2021,766:145154.
[47].Chen Y,Li X,Li B,et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling[J]. Mol Ther,2019,27(1):29-45.
[48].Si X,Zheng H,Wei G,et al. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a[J]. Mol Ther Nucleic Acids,2020,21:636-655.
[49].Zhang M,Wang Z,Cheng Q,et al. Circular RNA(circRNA) CDYL induces myocardial regeneration by ceRNA after myocardial infarction[J]. Med Sci Monit,2020,26:e923188.
[50].Zhao P,Wang Y,Zhang L,et al. Mechanism of long noncoding RNA metastasisassociated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure[J]. Int J Mol Med,2021,47(3):5.
[51].Ge Z,Yin C,Li Y,et al. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region[J]. J Transl Med,2022,20(1):7.
[52].Ou Y,Liao C,Li H,et al. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure[J]. IUBMB Life,2020,72(11):2469-2480.
[53].Zhang M,Zhang B,Wang X,et al. LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis[J]. Sci China Life Sci,2023,66(4):783-799.
[54].Jeong A,Lim Y,Kook T,et al. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts [J]. Mol Ther Nucleic Acids,2023,34:102071.
[55].Detela G,Lodge A. EU regulatory pathways for ATMPs:standard,accelerated and adaptive pathways to marketing authorisation[J]. Mol Ther Methods Clin Dev,2019,13:205-232.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(2):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(2):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(2):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(2):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(2):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(2):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]游月婷 黄刚 张小刚 张亚丽 邓自刚 屈树新 靳忠民 徐俊波.心力衰竭动物建模的进展[J].心血管病学进展,2021,(12):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
YOU YuetingHUANG Gang,ZHANG Xiaogang,ZHANG Yali,et al.Animal Models Establishment of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(2):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]