参考文献/References:
[1] Collaboration N C D R F. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants[J]. Lancet, 2024, 404(10467):2077-2093.
[2] Jaquenod de Giusti C,Palomeque J,Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction:a converging road to prediabetic and diabetic cardiomyopathy[J]. Pflugers Arch,2022,474(1):33-61.
[3] Ke J,Pan J,Lin H,et al. Diabetic cardiomyopathy:a brief summary on lipid toxicity[J]. ESC Heart Fail,2023,10(2):776-790.
[4] Che L,Wu JS,Du ZB,et al. Targeting mitochondrial COX-2 enhances chemosensitivity via Drp1-dependent remodeling of mitochondrial dynamics in hepatocellular carcinoma[J]. Cancers (Basel),2022,14(3):821.
[5] Tanner L,Single AB,Bhongir RKV,et al. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model[J]. Nat Commun,2023,14(1):643.
[6] Li C,Xue Y,Ba X,et al. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy[J]. Cells,2022,11(23):3798.
[7] Roy B,Runa SA. SARS-CoV-2 infection and diabetes:pathophysiological mechanism of multi-system organ failure[J]. World J Virol,2022,11(5):252-274.
[8] Wang S,Chen Z,Zhu S,et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer[J]. Redox Biol,2020,28:101319.
[9] Lejeune S,Roy C,Slimani A,et al. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort[J]. Cardiovasc Diabetol,2021,20(1):48.
[10] Rodriguez LR,Lapena-Luzon T,Beneto N,et al. Therapeutic strategies targeting mitochondrial calcium signaling:a new hope for neurological diseases?[J]. Antioxidants (Basel),2022,11(1):65.
[11] Lu Y,Zhu S,Wang X,et al. ShengMai-San attenuates cardiac remodeling in diabetic rats by inhibiting NOX-mediated oxidative stress[J]. Diabetes Metab Syndr Obes,2021,14:647-657.
[12] Liu N,Sun Q,Wan L,et al. CUX1,a controversial player in tumor development[J]. Front Oncol,2020,10:738.
[13] Komakula SSB,Tumova J,Kumaraswamy D,et al. The DNA repair protein OGG1 protects against obesity by altering mitochondrial energetics in white adipose tissue[J]. Sci Rep,2018,8(1):14886.
[14] Lin Z,Xu W,Li C,et al. β-8-oxoguanine DNA glycosylase overexpression reduces oxidative stress-induced mitochondrial dysfunction and apoptosis through the JNK signaling pathway in human bronchial epithelial cells[J]. DNA Cell Biol,2017,36(12):1071-1080.
[15] Pang J,Xi C,Dai Y,et al. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes[J]. Med Sci Monit,2012,18(7):BR281-BR285.
[16] Vartanian V,Tumova J,Dobrzyn P,et al. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle[J]. PLoS One,2017,12(7):e0181687.
[17] Peng GX,Mao XL,Cao Y,et al. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation[J]. Nucleic Acids Res,2022,50(22):12951-12968.
[18] Noll C,Kandiah J,Moroy G,et al. Catechins as a potential dietary supplementation in prevention of comorbidities linked with down syndrome[J]. Nutrients,2022,14(10):2039.
[19] Lew SY,Phang MWL,Chong PS,et al. Discovery of therapeutics targeting oxidative stress in autosomal recessive cerebellar ataxia:a systematic review[J]. Pharmaceuticals (Basel),2022,15(6):764.
[20] Ni Y,Deng J,Liu X,et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol[J]. J Cell Mol Med,2021,25(1):203-216.
[21] ArulJothi KN,Kumaran K,Senthil S,et al. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions[J]. Med Oncol,2022,40(1):43.
[22] Dhama K,Latheef SK,Dadar M,et al. Biomarkers in stress related diseases/disorders:diagnostic,prognostic,and therapeutic values[J]. Front Mol Biosci,2019,6:91.
[23] Bai K,Hao E,Huang CX,et al. Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway[J]. Poult Sci,2023,102(8):102745.
[24] Vongsamphanh R,Wagner JR,Ramotar D. Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome[J]. DNA Repair (Amst),2006,5(2):235-242.
[25] Torres-Gonzalez M,Gawlowski T,Kocalis H,et al. Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions[J]. Am J Physiol Cell Physiol,2014,306(3):C221-C229.
[26] Cividini F,Scott BT,Dai A,et al. O-GlcNAcylation of 8-oxoguanine DNA glycosylase (Ogg1) impairs oxidative mitochondrial DNA lesion repair in diabetic hearts[J]. J Biol Chem,2016,291(51):26515-26528.
[27] Liu D,Ji Q,Cheng Y,et al. Cyclosporine A loaded brain targeting nanoparticle to treat cerebral ischemia/reperfusion injury in mice[J]. J Nanobiotechnology,2022,20(1):256.
[28] Ruchko M,Gorodnya O,LeDoux SP,et al. Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2005,288(3):L530-L535.
[29] Yang XM,Cui L,White J,et al. Mitochondrially targeted Endonuclease Ⅲ has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion[J]. Basic Res Cardiol ,2015,110(2):3.
[30] Yasuda K,Nakanishi K,Tsutsui H. Interleukin-18 in health and disease[J]. Int J Mol Sci,2019,20(3):649.
[31] Xian H,Watari K,Sanchez-Lopez E,et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J]. Immunity,2022,55(8):1370-1385. e8.
[32] Wei J,Zhao Y,Liang H,et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B,2022,12(1):1-17.
[33] Cheresh P,Morales-Nebreda L,Kim SJ,et al. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice[J]. Am J Respir Cell Mol Biol,2015,52(1):25-36.
[34] Wang J,Wang Q,Watson L J,et al. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction[J]. Am J Physiol Heart Circ Physiol,2011,301(5):H2073-H2080.
[35] Palomer X,Pizarro-Delgado J,Vazquez-Carrera M. Emerging actors in diabetic cardiomyopathy:heartbreaker biomarkers or therapeutic targets?[J]. Trends Pharmacol Sci,2018,39(5):452-467.
[36] Sun H,Saeedi P,Karuranga S,et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2022,183:109119.
[37] Visnes T,Benitez-Buelga C,Cazares-Korner A,et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress[J]. Nucleic Acids Res,2020,48(21):12234-12251.
[38] de Sousa MML,Ye J,Luna L,et al. Impact of oxidative DNA damage and the role of DNA glycosylases in neurological dysfunction[J]. Int J Mol Sci,2021,22(23):12924.
[39] Pao P C,Patnaik D,Watson L A,et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease[J]. Nat Commun,2020,11(1):2484.
相似文献/References:
[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(3):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(3):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[3]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(3):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[4]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(3):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[5]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(3):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[6]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(3):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[7]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[8]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(3):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[9]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(3):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[10]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(3):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]