[1]陈洪侨 吴子君 吴铿.OGG1在糖尿病心肌病中的研究进展[J].心血管病学进展,2025,(3):240.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.011]
 CHEN Hongqiao,WU Zijun,WU Keng.Research Progress of OGG1 in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2025,(3):240.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.011]
点击复制

OGG1在糖尿病心肌病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年3期
页码:
240
栏目:
综述
出版日期:
2025-03-25

文章信息/Info

Title:
Research Progress of OGG1 in Diabetic Cardiomyopathy
作者:
陈洪侨1 吴子君2 吴铿2
(1.广东医科大学研究生院,广东 湛江524023;2.广东医科大学附属医院心血管内科,广东 湛江524002)
Author(s):
CHEN Hongqiao 1WU Zijun 2WU Keng2
(1.Graduate School of Guangdong Medical University,Zhanjiang 524023,Guangdong,China; 2. Department of Cardiovascular Medicine,Affiliated Hospital of Guangdong Medical University,Zhanjiang 524002,Guangdong,China.)
关键词:
糖尿病糖尿病心肌病8﹣羟基鸟嘌呤DNA糖苷酶1氧化应激线粒体功能障碍
Keywords:
Diabetes mellitusDiabetic cardiomyopathy8-oxoguanine DNA glycosylase 1Oxidative stressMitochondrial dysfunction
DOI:
10.16806/j.cnki.issn.1004-3934.2025.03.011
摘要:
糖尿病心肌病是由糖尿病引起的一种独立于高血压、冠状动脉疾病和结构性心脏病等具有明确病因的特异性心肌病。引起糖尿病心肌病的发病机制复杂多样,包括氧化应激和线粒体功能障碍等。8﹣羟基鸟嘌呤DNA糖苷酶1(OGG1)能使受损的线粒体功能恢复正常,从而维持生命体正常的能量供应,目前许多研究已证实其在癌症、免疫、神经退行性疾病及心血管疾病等领域中扮演了非常重要的角色。OGG1与糖尿病心肌病的发生发展密切相关,值得进一步研究和开发相关的治疗策略,现就OGG1在糖尿病心肌病发病机制中的作用进行综述。
Abstract:
Diabetic cardiomyopathy is a kind of specific cardiomyopathy caused by diabetes,independent of hypertension,coronary artery disease and structural heart disease. The pathogenesis of diabetic cardiomyopathy is complex and diverse,including oxidative stress and mitochondrial dysfunction. 8-oxoguanine DNA glycosylase 1 (OGG1) can restore the damaged mitochondrial function to normal,so as to maintain the normal energy supply of living organisms. Many studies have confirmed that it plays an important role in cancer,immunity,neurodegenerative diseases and cardiovascular diseases. OGG1 is closely related to the occurrence and development of diabetic cardiomyopathy,which is worthy of further research and development of related treatment strategies. This article reviews the role of OGG1 in the pathogenesis of diabetic cardiomyopathy

参考文献/References:

[1] Collaboration N C D R F. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants[J]. Lancet, 2024, 404(10467):2077-2093.

[2] Jaquenod de Giusti C,Palomeque J,Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction:a converging road to prediabetic and diabetic cardiomyopathy[J]. Pflugers Arch,2022,474(1):33-61.

[3] Ke J,Pan J,Lin H,et al. Diabetic cardiomyopathy:a brief summary on lipid toxicity[J]. ESC Heart Fail,2023,10(2):776-790.

[4] Che L,Wu JS,Du ZB,et al. Targeting mitochondrial COX-2 enhances chemosensitivity via Drp1-dependent remodeling of mitochondrial dynamics in hepatocellular carcinoma[J]. Cancers (Basel),2022,14(3):821.

[5] Tanner L,Single AB,Bhongir RKV,et al. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model[J]. Nat Commun,2023,14(1):643.

[6] Li C,Xue Y,Ba X,et al. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy[J]. Cells,2022,11(23):3798.

[7] Roy B,Runa SA. SARS-CoV-2 infection and diabetes:pathophysiological mechanism of multi-system organ failure[J]. World J Virol,2022,11(5):252-274.

[8] Wang S,Chen Z,Zhu S,et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer[J]. Redox Biol,2020,28:101319.

[9] Lejeune S,Roy C,Slimani A,et al. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort[J]. Cardiovasc Diabetol,2021,20(1):48.

[10] Rodriguez LR,Lapena-Luzon T,Beneto N,et al. Therapeutic strategies targeting mitochondrial calcium signaling:a new hope for neurological diseases?[J]. Antioxidants (Basel),2022,11(1):65.

[11] Lu Y,Zhu S,Wang X,et al. ShengMai-San attenuates cardiac remodeling in diabetic rats by inhibiting NOX-mediated oxidative stress[J]. Diabetes Metab Syndr Obes,2021,14:647-657.

[12] Liu N,Sun Q,Wan L,et al. CUX1,a controversial player in tumor development[J]. Front Oncol,2020,10:738.

[13] Komakula SSB,Tumova J,Kumaraswamy D,et al. The DNA repair protein OGG1 protects against obesity by altering mitochondrial energetics in white adipose tissue[J]. Sci Rep,2018,8(1):14886.

[14] Lin Z,Xu W,Li C,et al. β-8-oxoguanine DNA glycosylase overexpression reduces oxidative stress-induced mitochondrial dysfunction and apoptosis through the JNK signaling pathway in human bronchial epithelial cells[J]. DNA Cell Biol,2017,36(12):1071-1080.

[15] Pang J,Xi C,Dai Y,et al. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes[J]. Med Sci Monit,2012,18(7):BR281-BR285.

[16] Vartanian V,Tumova J,Dobrzyn P,et al. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle[J]. PLoS One,2017,12(7):e0181687.

[17] Peng GX,Mao XL,Cao Y,et al. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation[J]. Nucleic Acids Res,2022,50(22):12951-12968.

[18] Noll C,Kandiah J,Moroy G,et al. Catechins as a potential dietary supplementation in prevention of comorbidities linked with down syndrome[J]. Nutrients,2022,14(10):2039.

[19] Lew SY,Phang MWL,Chong PS,et al. Discovery of therapeutics targeting oxidative stress in autosomal recessive cerebellar ataxia:a systematic review[J]. Pharmaceuticals (Basel),2022,15(6):764.

[20] Ni Y,Deng J,Liu X,et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol[J]. J Cell Mol Med,2021,25(1):203-216.

[21] ArulJothi KN,Kumaran K,Senthil S,et al. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions[J]. Med Oncol,2022,40(1):43.

[22] Dhama K,Latheef SK,Dadar M,et al. Biomarkers in stress related diseases/disorders:diagnostic,prognostic,and therapeutic values[J]. Front Mol Biosci,2019,6:91.

[23] Bai K,Hao E,Huang CX,et al. Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway[J]. Poult Sci,2023,102(8):102745.

[24] Vongsamphanh R,Wagner JR,Ramotar D. Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome[J]. DNA Repair (Amst),2006,5(2):235-242.

[25] Torres-Gonzalez M,Gawlowski T,Kocalis H,et al. Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions[J]. Am J Physiol Cell Physiol,2014,306(3):C221-C229.

[26] Cividini F,Scott BT,Dai A,et al. O-GlcNAcylation of 8-oxoguanine DNA glycosylase (Ogg1) impairs oxidative mitochondrial DNA lesion repair in diabetic hearts[J]. J Biol Chem,2016,291(51):26515-26528.

[27] Liu D,Ji Q,Cheng Y,et al. Cyclosporine A loaded brain targeting nanoparticle to treat cerebral ischemia/reperfusion injury in mice[J]. J Nanobiotechnology,2022,20(1):256.

[28] Ruchko M,Gorodnya O,LeDoux SP,et al. Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2005,288(3):L530-L535.

[29] Yang XM,Cui L,White J,et al. Mitochondrially targeted Endonuclease Ⅲ has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion[J]. Basic Res Cardiol ,2015,110(2):3.

[30] Yasuda K,Nakanishi K,Tsutsui H. Interleukin-18 in health and disease[J]. Int J Mol Sci,2019,20(3):649.

[31] Xian H,Watari K,Sanchez-Lopez E,et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J]. Immunity,2022,55(8):1370-1385. e8.

[32] Wei J,Zhao Y,Liang H,et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B,2022,12(1):1-17.

[33] Cheresh P,Morales-Nebreda L,Kim SJ,et al. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice[J]. Am J Respir Cell Mol Biol,2015,52(1):25-36.

[34] Wang J,Wang Q,Watson L J,et al. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction[J]. Am J Physiol Heart Circ Physiol,2011,301(5):H2073-H2080.

[35] Palomer X,Pizarro-Delgado J,Vazquez-Carrera M. Emerging actors in diabetic cardiomyopathy:heartbreaker biomarkers or therapeutic targets?[J]. Trends Pharmacol Sci,2018,39(5):452-467.

[36] Sun H,Saeedi P,Karuranga S,et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2022,183:109119.

[37] Visnes T,Benitez-Buelga C,Cazares-Korner A,et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress[J]. Nucleic Acids Res,2020,48(21):12234-12251.

[38] de Sousa MML,Ye J,Luna L,et al. Impact of oxidative DNA damage and the role of DNA glycosylases in neurological dysfunction[J]. Int J Mol Sci,2021,22(23):12924.

[39] Pao P C,Patnaik D,Watson L A,et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease[J]. Nat Commun,2020,11(1):2484.

相似文献/References:

[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
 ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(3):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(3):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[3]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(3):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[4]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(3):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[5]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
 HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(3):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[6]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
 XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(3):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[7]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[8]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(3):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[9]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(3):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[10]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
 Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(3):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]

更新日期/Last Update: 2025-04-29