参考文献/References:
[1].Goncharov RG,Sharapov MG. [Ischemia-reperfusion injury:molecular mechanisms of pathogenesis and methods of their correction][J]. Mol Biol (Mosk),2023,57(6):1150-1174.
[2].Liu Z,Zhang F,Zhao L,et al. Protective effect of pravastatin on myocardial ischemia reperfusion injury by regulation of the miR-93/Nrf2/ARE signal pathway[J]. Drug Des Devel Ther ,2020,14:3853-3864.
[3].Salazar-Gonzalez H,Gutierrez-Mercado YK,Munguia-Galaviz FJ,et al. Signaling pathways involved in myocardial ischemia-reperfusion injury and cardioprotection:a systematic review of transcriptomic studies inSus scrofa[J]. Cardiovasc Dev Dis,2022,9(5):132.
[4].Wang F,Gao Q,Yang J,et al. Artemisinin suppresses myocardial ischemia-reperfusion injury via NLRP3 inflammasome mechanism[J]. Mol Cell Biochem ,2020,474(1-2):171-180.
[5].Cainzos-Achirica M,Martin SS,Cornell JE,et al. PCSK9 inhibitors:a new era in lipid-lowering treatment? [J] . Ann Intern Med ,2015,163(1):64-65.
[6].Wang R,Chen X,Li X,Wang K. Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis[J]. J Mol Med (Berl),2023,101(9):1059-1071.
[7].Wang R,Wang M,Zhou J,et al. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury:possible mechanism and target analysis[J]. Front Pharmacol,2021,11:570867.
[8].Sun M,Guo M,Ma G,et al. MicroRNA-30c-5p protects against myocardial ischemia/reperfusion injury via regulation of Bach1/Nrf2[J]. Toxicol Appl Pharmacol,2021,426:115637.
[9].Wang R,Wang M,Liu B,et al. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca2+ channels through BAG3[J]. Biomed Pharmacother,2022,145:112432.
[10].Khan H,Kaur Grewal A,Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury[J]. Mitochondrion,2022,66:54-66.
[11].Yin T,Wang N,Jia F,et al. Exosome-based WTAP siRNA delivery ameliorates myocardial ischemia-reperfusion injury[J]. Eur J Pharm Biopharm,2024,197:114218.
[12].Guo Y,Jia P,Chen Y,et al. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury[J]. Life Sci,2020,245:117347.
[13].Chen TY,Zheng SK. Hace1 overexpression mitigates myocardial hypoxia/reoxygenation injury via the effects on Keap1/Nrf2 pathway[J]. In Vitro Cell Dev Biol Anim,2022,58(9):830-839.
[14].Chen YH,Lin H,Wang Q,et al. Protective role of silibinin against myocardial ischemia/reperfusion injury-induced cardiac dysfunction[J]. Int J Biol Sci,2020,16(11):1972-1988.
[15].Xu Q,Liu M,Gu J,et al. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1[J]. Cell Death Discov,2022,8(1):291.
[16].Xue Y,Fu W,Liu Y,et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation[J]. J Food Sci,2020,85(11):4039-4049.
[17].Jin AP,Zhang QR,Yang CL,et al. Up-regulation of CTRP12 ameliorates hypoxia/re-oxygenation-induced cardiomyocyte injury by inhibiting apoptosis,oxidative stress,and inflammation via the enhancement of Nrf2 signaling[J]. Hum Exp Toxicol,2021,40(12):2087-2098.
[18].Zeng G,Lian C,Li W,et al. Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis,oxidative stress,and inflammatory response via enhancing Nrf2/ARE activation[J]. Environ Toxicol,2022,37(5):1018-1031.
[19].Zhang Y,Wang Z,Jia C,et al. Blockade of hepatocyte PCSK9 ameliorates hepatic ischemia-reperfusion injury by promoting Pink1-Parkin-mediated mitophagy[J]. Cell Mol Gastroenterol Hepatol,2024,17(1):149-169.
[20].Deng RM,Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury[J]. Int Immunopharmacol,2023,123:110714.
[21].Zhang Y,Shi K,Lin T,et al. Ganoderic acid A alleviates myocardial ischemia-reperfusion injury in rats by regulating JAK2/STAT3/NF-κB pathway[J]. Int Immunopharmacol,2020,84:106543.
[22].Korshunova AY,Blagonravov ML,Neborak EV,et al. BCL2?regulated apoptotic process in myocardial ischemia?reperfusion injury (Review)[J]. Int J Mol Med,2021,47(1):23-36.
[23].Xia Y,He F,Yacouba MBM,et al. Adenosine A2a receptor regulates autophagy flux and apoptosis to alleviate ischemia-reperfusion injury via the cAMP/PKA signaling pathway[J]. Front Cardiovasc Med,2022,9:755619.
[24].唐志晗,曾海燕,曾高峰,等. 枯草溶菌素转换酶9在大鼠心肌缺血再灌注损伤中的表达变化[J]. 南京医科大学学报(自然科学版),2011,31(3):380-383.
[25].Ding Z,Wang X,Liu S,et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size,cardiac function,and development of autophagy[J]. Cardiovasc Res,2018,114(13):1738-1751.
[26].Tang LJ,Luo XJ,Tu H,et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol,2021,394(2):401-410.
相似文献/References:
[1]胥雪莲,何川.前蛋白转化酶枯草溶菌素9与动脉粥样硬化[J].心血管病学进展,2016,(1):50.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.013]
XU Xuelian,HE Chuan.Proprotein Convertase Subtilisin/Kexin Type 9 and Atherosclerosis[J].Advances in Cardiovascular Diseases,2016,(1):50.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.013]
[2]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[3]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(1):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[4]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(1):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[5]李艳茹,白世茹,李如意,等.PCSK9抑制剂在血脂代谢中的研究进展[J].心血管病学进展,2020,(7):729.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.014]
LI Yanru,BAI Shiru,LI Ruyi,et al.PCSK9 Inhibitors in Lipid Metabolism[J].Advances in Cardiovascular Diseases,2020,(1):729.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.014]
[6]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(1):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[7]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(1):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[8]孟凡华 付真彦.一种新型的治疗血脂异常的干扰RNA药物Inclisiran[J].心血管病学进展,2021,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.018]
MENG Fanhua,FU Zhenyan.Inclisiran, A New Small Interfering RNA Drug for the Treatment of Dyslipidemia[J].Advances in Cardiovascular Diseases,2021,(1):167.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.018]
[9]王申仪 阳军.基于RNA疗法在动脉粥样硬化性心血管疾病血脂管理的研究进展[J].心血管病学进展,2021,(4):369.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.019]
Wang Shenyi,Yang Jun.Era of RNA-based Therapies in Lipid Management of?oronary Atherosclerotic Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(1):369.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.019]
[10]许海南 龙明智.新型降脂药物干扰小RNA Inclisiran最新研究进展[J].心血管病学进展,2021,(7):590.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.004]
XU Hainan,LONG Mingzhi.Small Interfering RNA Inclisiran[J].Advances in Cardiovascular Diseases,2021,(1):590.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.004]