[1]蒲思颖 胡朗 郭艳杰 李妍.脂滴与细胞器之间的相互作用在心血管疾病中的研究进展[J].心血管病学进展,2025,(1):37.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.009]
 PU Siying,HU Lang,GUO Yanjie,et al.The Interaction Between Lipid Droplets and Organelles in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2025,(1):37.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.009]
点击复制

脂滴与细胞器之间的相互作用在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年1期
页码:
37
栏目:
综述
出版日期:
2025-01-25

文章信息/Info

Title:
The Interaction Between Lipid Droplets and Organelles in Cardiovascular Diseases
作者:
蒲思颖12 胡朗 2 郭艳杰 3 李妍2
(1.西安医学院,陕西 西安 710021;2.空军军医大学第二附属医院心血管内科,陕西 西安 710038;3.西安国际医学中心医院心内科,陕西 西安 710100)
Author(s):
PU Siying2HU Lang2GUO Yanjie3LI Yan2
Xian Medical College,Xi’an 710021,Shaanxi,China; 2. Department of Cardiology,The Second Affiliated Hospital of Air Force Medical University,Xi’an 710038,Shaanxi,China;3.Department of Cardiology, Xian International Medical Center Hospital,Xi’an 710100,Shaanxi,China)
关键词:
脂滴细胞器互作心血管疾病内质网线粒体
Keywords:
Lipid dropletsOrganelle interactionsCardiovascular diseasesEndoplasmic reticulumMitochondria
DOI:
10.16806/j.cnki.issn.1004-3934.2025.01.009
摘要:
细胞器不仅具有各自特定的功能,还能通过相互作用来共同完成重要的生理功能。脂滴是一种特殊而动态的细胞器,对细胞和器官的健康起着重要作用。近年来,人们对脂滴在代谢性疾病的发生和发展中扮演的角色越来越关注。脂滴的形成、代谢以及与其他细胞器的相互作用共同驱动了细胞内脂质的稳态调控。现综述最新的研究进展,总结脂滴与胞内细胞器之间的相互作用,并探讨它们如何共同影响心血管疾病的发生和进展。
Abstract:
Organelles not only have specific functions but also cooperate through interactions to fulfill important physiological functions. Lipid droplets,as unique and dynamic organelles,play a vital role in cellular and organ health. In recent years,there has been increasing attention on the role of lipid droplets in the occurrence and progression of metabolic diseases. The formation,metabolism,and interaction of lipid droplets with other organelles collectively drive the homeostatic regulation of cellular lipids. This review aims to summarize the latest research progress,explore the interplay between lipid droplets and intracellular organelles,and discuss how they jointly impact the occurrence and progression of cardiovascular diseases

参考文献/References:

[1] Herker E,Vieyres G,Beller M,et al. Lipid droplet contact sites in health and disease[J]. Trends Cell Biol,2021,31(5):345-358.

[2] Apte MS,Joshi AS. Membrane shaping proteins,lipids,and cytoskeleton:recipe for nascent lipid droplet formation[J]. Bioessays,2022,44(9):e2200038.

[3] Venditti R,Wilson C,De Matteis MA. Regulation and physiology of membrane contact sites[J]. Curr Opin Cell Biol,2021,71:148-157.

[4] Amado L,Cogan AP,González Montoro A. Different tether proteins of the same membrane contact site affect the localization and mobility of each other[J]. J Cell Sci,2023,136(13):jcs260786.

[5] Zhao Y,Zhuang Z,Li Y,et al. Elevated blood remnant cholesterol and triglycerides are causally related to the risks of cardiometabolic multimorbidity[J]. Nat Commun,2024,15(1):2451.

[6] Valm AM,Cohen S,Legant WR,et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome[J]. Nature,2017,546(7656):162-167.

[7] Burbridge E,Adrain C. Organelle homeostasis:from cellular mechanisms to disease[J]. FEBS J,2022,289(22):6822-6831.

[8] Merighi A,Lossi L. Endoplasmic reticulum stress signaling and neuronal cell death[J]. Int J Mol Sci,2022,23(23):15186.

[9] Hugenroth M,Bohnert M. Come a little bit closer! Lipid droplet-ER contact sites are getting crowded[J]. Biochim Biophys Acta Mol Cell Res,2020,1867(2):118603.

[10] Nettebrock NT,Bohnert M. Born this way—Biogenesis of lipid droplets from specialized ER subdomains[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2020,1865(1):158448.

[11] Zhou H,Li J,Su H,et al. BSCL2/Seipin deficiency in hearts causes cardiac energy deficit and dysfunction via inducing excessive lipid catabolism[J]. Clin Transl Med,2022,12(4):e736.

[12] Zheng X,Ho QWC,Chua M,et al. Destabilization of β cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes[J]. Proc Natl Acad Sci U S A,2022,119(11):e2113074119.

[13] López-Alcalá J,Soler-Vázquez MC,Tercero-Alcázar C,et al. Rab18 drift in lipid droplet and endoplasmic reticulum interactions of adipocytes under obesogenic conditions[J]. Int J Mol Sci,2023,24(24):17177.

[14] Cui L,Liu P. Two types of contact between lipid droplets and mitochondria[J]. Front Cell Dev Biol,2020,8:618322.

[15] Benador IY,Veliova M,Liesa M,et al. Mitochondria bound to lipid droplets:where mitochondrial dynamics regulate lipid storage and utilization[J]. Cell Metab,2019,29(4):827-835.

[16] Cinato M,Andersson L,Miljanovic A,et al. Role of perilipins in oxidative stress-implications for cardiovascular disease[J]. Antioxidants (Basel),2024,13(2):209.

[17] Zheng P,Xie Z,Yuan Y,et al. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets[J]. Sci Rep,2017,7:42574.

[18] Wang H,Sreenivasan U,Gong DW,et al. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction[J]. J Lipid Res,2013,54(4):953-965.

[19] Miner GE,So CM,Edwards W,et al. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport[J]. Dev Cell,2023,58(14):1250-1265.e6.

[20] Hu L,Tang D,Qi B,et al. Mfn2/Hsc70 complex mediates the formation of mitochondria-lipid droplets membrane contact and regulates myocardial lipid metabolism[J]. Adv Sci (Weinh),2024,11(14):e2307749.

[21] Wang J,Fang N,Xiong J,et al. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D-TSG101 interactions[J]. Nat Commun,2021,12(1):1252.

[22] Zhen Y,Stenmark H. Autophagosome biogenesis[J]. Cells,2023,12(4):668.

[23] Ouimet M,Franklin V,Mak E,et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase[J]. Cell Metab,2011,13(6):655-667.

[24] Martinez-Lopez N,Garcia-Macia M,Sahu S,et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver[J]. Cell Metab,2016,23(1):113-127.

[25] Qiao L,Ma J,Zhang Z,et al. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis[J]. Circ Res,2021,129(12):1141-1157.

[26] Ghosh R,Gillaspie JJ,Campbell KS,et al. Chaperone-mediated autophagy protects cardiomyocytes against hypoxic-cell death[J]. Am J Physiol Cell Physiol,2022,323(5):C1555-C1575.

[27] Chi C,Leonard A,Knight WE,et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion[J]. Proc Natl Acad Sci U S A,2019,116(2):556-565.

[28] de Magistris P,Antonin W. The dynamic nature of the nuclear envelope[J]. Curr Biol,2018,28(8):R487-R497.

[29] Lagrutta LC,Layerenza JP,Bronsoms S,et al. Nuclear-lipid-droplet proteome:carboxylesterase as a nuclear lipase involved in lipid-droplet homeostasis[J]. Heliyon,2021,7(3):e06539.

[30] Molina E,Chew GS,Myers SA,et al. A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes[J]. Sci Rep,2017,7(1):16710.

[31] Du X,Yang H. Seipin regulates the formation of nuclear lipid droplets from a distance[J]. J Cell Biol,2021,220(1):e202011166.

[32] Kumanski S,Viart BT,Kossida S,et al. lipid droplets are a physiological nucleoporin reservoir[J]. Cells,2021,10(2):472.

[33] Liu J, Lu W, Shi B,et al. Peroxisomal regulation of redox homeostasis and adipocyte metabolism[J]. Redox Biol,2019,24:101167.

[34] Joshi AS,Nebenfuehr B,Choudhary V,et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains[J]. Nat Commun,2018,9(1):2940.

[35] Chang CL,Weigel AV,Ioannou MS,et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-Ⅲ[J]. J Cell Biol,2019,218(8):2583-2599.

[36] Montaigne D,Butruille L,Staels B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol,2021,18(12):809-823.

[37] Gilleron J,Zeigerer A. Endosomal trafficking in metabolic homeostasis and diseases[J]. Nat Rev Endocrinol,2023,19(1):28-45.

[38] Ronzier E,Parks XX,Qudsi H,et al. Statin-specific inhibition of Rab-GTPase regulates cPKC-mediated IKs internalization[J]. Sci Rep,2019,9(1):17747.

[39] Scott CC,Vossio S,Vacca F,et al. Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis[J]. EMBO Rep,2015,16(6):741-752.

相似文献/References:

[1]李甜甜 亓秉超 陈亮 李妍.以线粒体为中心的调控网络在心血管疾病中的研究进展[J].心血管病学进展,2024,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]
 LI Tiantian,QI Bingchao,CHEN Liang,et al.Mitochondria-Centered Regulatory Network in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2024,(1):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]

更新日期/Last Update: 2025-02-26