参考文献/References:
[1] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancent,2020,396(10258):1204-1222.
[2] Liu NB,Wu M,Chen C,et al. Novel molecular targets participating in myocardial ischemia-reperfusion injury and cardioprotection[J]. Cardiol Res Pract,2019,2019:6935147.
[3] Zhang W,Lang R. Succinate metabolism:a promising therapeutic target for inflammation,ischemia/reperfusion injury and cancer[J]. Front Cell Dev Biol,2023,11:1266973.
[4] Zhang J,Wang YT,Miller JH,et al. Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity[J]. Cell Rep,2018,23(9):2617-2628.
[5] Chouchani ET,Pell VR,Gaude E,et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature,2014,515(7527):431-435.
[6] Prag HA,Gruszczyk AV,Huang MM,et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart[J]. Cardiovasc Res,2021,117(4):1188-1201.
[7] Choi I,Son H,Baek JH. Tricarboxylic acid (TCA) cycle intermediates:regulators of immune responses[J]. Life(Basel),2021,11(1):69.
[8] Murphy MP,O’Neill LAJ. Krebs cycle reimagined:the emerging roles of succinate and itaconate as signal transducers[J]. Cell,2018,174(4):780-784.
[9] Serena C,Ceperuelo-Mallafré V,Keiran N,et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota[J]. ISME J,2018,12(7):1642-1657.
[10] Fremder M,Kim SW,Khamaysi A,et al. A transepithelial pathway delivers succinate to macrophages,thus perpetuating their pro-inflammatory metabolic state[J]. Cell Rep,2021,36(6):109521.
[11] Krzak G,Willis CM,Smith JA,et al. Succinate receptor 1:an emerging regulator of myeloid cell function in inflammation[J]. Trends Immunol,2021,42(1):45-58.
[12] Gilissen J,Jouret F,Pirotte B,et al. Insight into SUCNR1 (GPR91) structure and function[J]. Pharmacol Ther,2016,159:56-65.
[13] Zhang S,Liang Y,Li L,et al. Succinate:a novel mediator to promote atherosclerotic lesion progression[J]. DNA Cell Biol,2022,41(3):285-291.
[14] Vargas SL,Toma I,Kang JJ,et al. Activation of the succinate receptor GPR91 in macula densa cells causes renin release[J]. J Am Soc Nephrol,2009,20(5):1002-1011.
[15] Li J,Yang YL,Li LZ,et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways:therapeutic effects of ginsenoside Rb1[J]. Biochim Biophys Acta Mol Basis Dis,2017,1863(11):2835-2847.
[16] Wu KK. Extracellular Succinate:A physiological messenger and a pathological trigger[J]. Int J Mol Sci,2023,24(13):11165.
[17] Fernández-Veledo S,Ceperuelo-Mallafré V,Vendrell J. Rethinking succinate:an unexpected hormone-like metabolite in energy homeostasis[J]. Trends Endocrinol Metab,2021,32(9):680-692.
[18] Xu J,Zheng Y,Zhao Y,et al. Succinate/IL-1β signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis[J]. Front Immunol,2022,13:817572.
[19] Kohlhauer M,Dawkins S,Costa ASH,et al. Metabolomic profiling in acute ST-segment-elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury[J]. J Am Heart Assoc,2018,7(8):e007546.
[20] Chouchani ET,Pell VR,James AM,et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury[J]. Cell Metab,2016,23(2):254-263.
[21] Adameova A,Horvath C,Abdul-Ghani S,et al. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury:a focus on necroptosis[J]. Biomedicines,2022,10(1):127.
[22] Forte M,Schirone L,Ameri P,et al. The role of mitochondrial dynamics in cardiovascular diseases[J]. Br J Pharmacol,2021,178(10):2060-2076.
[23] Lu YT,Li LZ,Yang YL,et al. Succinate induces aberrant mitochondrial fission in cardiomyocytes through GPR91 signaling[J]. Cell Death Dis,2018,9(6):672.
[24] Algoet M,Janssens S,Himmelreich U,et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med,2023,33(6):357-366.
[25] Mills EL,Kelly B,Logan A,et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell,2016,167(2):457-470.e13.
[26] 章舒蕾梁亚敏罗涔方,等. 琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡[J]. 中国动脉硬化杂志2021,29(1):42-47.
[27] Prag HA,Aksentijevic D,Dannhorn A,et al. Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury[J]. Circ Res,2022,131(6):528-541.
[28] Prag HA,Pala L,Kula-Alwar D,et al. Ester prodrugs of malonate with enhanced intracellular delivery protect against cardiac ischemia-reperfusion injury in vivo[J]. Cardiovasc Drugs Ther,2022,36(1):1-13.
[29] Fernandez-Gomez FJ,Galindo MF,Gómez-Lázaro M,et al. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway[J]. Br J Pharmacol,2005,144(4):528-537.
[30] Valls-Lacalle L,Barba I,Miró-Casas E,et al. Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size[J]. Sci Rep,2018,8(1):2442.
[31] Milliken AS,Nadtochiy SM,Brookes PS. Inhibiting succinate release worsens cardiac reperfusion injury by enhancing mitochondrial reactive oxygen species generation[J]. J Am Heart Assoc,2022,11(13):e026135.
[32] Bonaventura A,Montecucco F,Dallegri F. Cellular recruitment in myocardial ischaemia/reperfusion injury[J]. Eur J Clin Invest,2016,46(6):590-601.
[33] Zuidema MY,Zhang C. Ischemia/reperfusion injury:the role of immune cells[J]. World J Cardiol,2010,2(10):325-332.
[34] Smiley D,Smith MA,Carreira V,et al. Increased fibrosis and progression to heart failure in MRL mice following ischemia/reperfusion injury[J]. Cardiovasc Pathol,2014,23(6):327-334.
[35] Aguiar CJ,Rocha-Franco JA,Sousa PA,et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation[J]. Cell Commun Signal,2014,12:78.
相似文献/References:
[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(8):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[3]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[4]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[5]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[6]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[7]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[8]李秋 李蔚华.TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
LI Qiu,LI Weihua.Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
[9]李俊霖 韩虎魁 程攀科 李刚 陶剑虹.Foxp3+调节性T细胞与心肌缺血再灌注损伤概述[J].心血管病学进展,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
LI Junlin,HAN Hukui,CHENG Panke,et al.Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
[10]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]