[1]杨安妮 厉腊梅 王绿娅 蔡高军.外泌体与脂质代谢研究进展[J].心血管病学进展,2024,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
 YANG Anni,LI Lamei,WANG Lyuya,et al.Research Progress on Exosomes and Lipid Metabolism[J].Advances in Cardiovascular Diseases,2024,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
点击复制

外泌体与脂质代谢研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年8期
页码:
753
栏目:
综述
出版日期:
2024-08-25

文章信息/Info

Title:
Research Progress on Exosomes and Lipid Metabolism
作者:
杨安妮 厉腊梅 王绿娅 蔡高军
(江苏大学附属武进医院 徐州医科大学附属武进临床医院心内科,江苏 常州 213017)
Author(s):
YANG AnniLI LameiWANG LyuyaCAI Gaojun
(Department of Cardiology,The Wujin Clinical College of Xuzhou Medical University,Wujin Hospital Affiliated to Jiangsu University,Changzhou 213017,Jiangsu,China)
关键词:
外泌体囊泡脂质代谢脂代谢相关疾病动脉粥样硬化
Keywords:
Exosomes Vesicles Lipid metabolism Lipid metabolism-related diseases Atherosclerosis
DOI:
10.16806/j.cnki.issn.1004-3934.2024.08.017
摘要:
近年来,外泌体与脂质代谢相关的研究越来越多。外泌体可以影响脂质代谢的发生与发展,在脂代谢与脂质相关疾病中发挥重要作用。同时,脂质代谢也能调节外泌体的生物发生及功能作用。现结合近年来国内外研究,阐述外泌体在脂质代谢相关领域的研究进展,并对外泌体在脂代谢与脂质相关疾病中的潜在价值及临床应用进行展望。
Abstract:
In recent years ,more and more studies have been conducted on the relationship between exosomes and lipid metabolism. Exosomes can affect the occurrence and development of lipid metabolism and play an important role in lipid metabolism and lipid-related diseases. At the same time ,lipid metabolism can also regulate the biogenesis and function of exosomes. In this paper,based on recent domestic and foreign studies,the research progress of exosomes in the fields related to lipid metabolism was reviewed,and the potential value and clinical application of exosomes in lipid metabolism and lipid-related diseases are prospected

参考文献/References:

[1] Valadi H,Ekstr?m K,Bossios A,et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659.

[2] van de Wakker SI,Bauzá-Martinez J,Ríos Arceo C,et al. Size matters:functional differences of small extracellular vesicle subpopulations in cardiac repair responses[J]. J Extracell Vesicles,2024,13(1):e12396.

[3] Gurung S,Perocheau D,Touramanidou L,et al. The exosome journey:from biogenesis to uptake and intracellular signalling[J]. Cell Commun Signal,2021,19(1):47.

[4] Liu Y J,Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication[J]. Cell Commun Signal,2023,21(1):77.

[5] Zhang Y,Liu Q,Zhang X,et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy[J]. J Nanobiotechnology,2022,20(1):279.

[6] Zein Abdin Z,Geng AZ,Chandy M. Exosomes and lipid metabolism in metabolic and cardiovascular disorders[J]. Curr Opin Lipidol,2023,34(2):82-91.

[7] Davidson SM,Boulanger CM,Aikawa E,et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies:from exosomes to microvesicles[J]. Cardiovasc Res,2023,119(1):45-63.

[8] Skotland T,Llorente A,Sandvig K. Lipids in extracellular vesicles:what can be learned about membrane structure and function?[J]. Cold Spring Harb Perspect Biol,2023,15(8):a041415.

[9] Donoso-Quezada J,Ayala-Mar S,González-Valdez J. The role of lipids in exosome biology and intercellular communication:Function,analytics and applications[J]. Traffic,2021,22(7):204-220.

[10] Ghadami S,Dellinger K. The lipid composition of extracellular vesicles:applications in diagnostics and therapeutic delivery[J]. Front Mol Biosci,2023,10:1198044.

[11] Mori T,Giovannelli L,Bilia AR,et al. Exosomes:potential next-generation nanocarriers for the therapy of inflammatory diseases[J]. Pharmaceutics,2023,15(9):2276.

[12] Kimiz-Gebologlu I,Oncel SS. Exosomes:Large-scale production,isolation,drug loading efficiency,and biodistribution and uptake[J]. J Control Release,2022,347:533-543.

[13] Gurunathan S,Kang MH,Kim JH. A comprehensive review on factors influences biogenesis,functions,therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine,2021,16:1281-1312.

[14] Lee YJ,Shin KJ,Jang HJ,et al. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis[J]. Dev Cell,2023,58(4):320-334.e328.

[15] Levy-Myers R,Daudelin D,Na CH,et al. An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function[J]. Sci Adv,2023,9(25):eadg2067.

[16] Ju Y,Bai H,Ren L,et al. The role of exosome and the ESCRT pathway on enveloped virus infection[J]. Int J Mol Sci,2021,22(16):9060.

[17] Krylova SV,Feng D. The machinery of exosomes:biogenesis,release,and uptake[J]. Int J Mol Sci,2023,24(2):1337.

[18] Han QF,Li WJ,Hu KS,et al. Exosome biogenesis:machinery,regulation,and therapeutic implications in cancer[J]. Mol Cancer,2022,21(1):207.

[19] Wang N,Li J,Hu Z,et al. Exosomes:new insights into the pathogenesis of metabolic syndrome[J]. Biology (Basel),2023,12(12):1480.

[20] Skotland T,Sagini K,Sandvig K,et al. An emerging focus on lipids in extracellular vesicles[J]. Adv Drug Deliv Rev,2020,159:308-321.

[21] Liu L,Li X. Downregulation of miR-320 alleviates endoplasmic reticulum stress and inflammatory response in 3T3-L1 adipocytes[J]. Exp Clin Endocrinol Diabetes,2021,129(2):131-137.

[22] Yin KL,Li M,Song PP,et al. Unraveling the emerging niche role of hepatic stellate cell-derived exosomes in liver diseases[J]. J Clin Transl Hepatol,2023,11(2):441-451.

[23] Du M,Li X,Xiao F,et al. Serine active site containing protein 1 depletion alters lipid metabolism and protects against high fat diet-induced obesity in mice[J]. Metabolism,2022,134:155244.

[24] Zhao J,Hu L,Gui W,et al. Hepatocyte TGF-β signaling inhibiting WAT browning to promote NAFLD and obesity is associated with Let-7b-5p[J]. Hepatol Commun,2022,6(6):1301-1321.

[25] Wu J,Dong T,Chen T,et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J]. Metabolism,2020,103:154006.

[26] Zhao H,Shang Q,Pan Z,et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes,2018,67(2):235-247.

[27] Yang K,Xiao Q,Niu M,et al. Exosomes in atherosclerosis:convergence on macrophages[J]. Int J Biol Sci,2022,18(8):3266-3281.

[28] Wen C,Li B,Nie L,et al. Emerging roles of extracellular vesicle-delivered circular RNAs in atherosclerosis[J]. Front Cell Dev Biol,2022,10:804247.

[29] Bouchareychas L,Duong P,Phu TA,et al. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis[J]. iScience,2021,24(8):102847.

[30] Zhang N,Luo Y,Zhang H,et al. Exosomes derived from mesenchymal stem cells ameliorate the progression of atherosclerosis in ApoE(-/-) mice via FENDRR[J]. Cardiovasc Toxicol,2022,22(6):528-544.

[31] Xu Y,Wan W,Zeng H,et al. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases:Situations and challenges[J]. J Transl Int Med,2023,11(4):341-354.

[32] Liu Y,Zhang WL,Gu JJ,et al. Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells[J]. Eur Rev Med Pharmacol Sci,2020,24(12):7039-7050.

[33] Zhang S,Yang Y,Lv X,et al. Unraveling the intricate roles of exosomes in cardiovascular diseases:a comprehensive review of physiological significance and pathological implications[J]. Int J Mol Sci,2023,24(21):15677.

[34] Qiu H,Shi S,Wang S,et al. Proteomic profiling exosomes from vascular smooth muscle cell[J]. Proteomics Clin Appl,2018,12(5):e1700097.

[35] Joglar JA,Chung MK,Armbruster AL,et al. 2023 ACC/AHA/ACCP/HRS Guideline for the diagnosis and management of atrial fibrillation:a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice Guidelines[J]. Circulation,2024,149(1):e1-e156.

[36] Willar B,Tran KV,Fitzgibbons TP. Epicardial adipocytes in the pathogenesis of atrial fibrillation:An update on basic and translational studies[J]. Front Endocrinol (Lausanne),2023,14:1154824.

[37] Xie Z,Wang X,Liu X,et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization[J]. J Am Heart Assoc,2018,7(5):e007442.

[38] Yang P,Chen Z,Huang W,et al. Communications between macrophages and cardiomyocytes[J]. Cell Commun Signal,2023,21(1):206.

[39] Zhang D,Yao X,Teng Y,et al. Adipocytes-derived exosomal microRNA-1224 inhibits M2 macrophage polarization in obesity-induced adipose tissue inflammation via MSI2-mediated Wnt/β-catenin axis[J]. Mol Nutr Food Res,2022,66(18):e2100889.

[40] Ernault AC,de Winter R,Fabrizi B,et al. MicroRNAs in extracellular vesicles released from epicardial adipose tissue promote arrhythmogenic conduction slowing[J]. Heart Rhythm O2,2023,4(12):805-814.

相似文献/References:

[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
 SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(8):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
 YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[3]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(8):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[4]张伟 木胡牙提.外泌体源性miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2020,(2):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
 Zhang Wei,Muhuyati.Exogenous miRNAs in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(8):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
[5]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
 LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[6]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(8):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[7]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
 XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(8):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[8]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
 YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(8):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[9]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
 YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(8):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
[10]陈鹏莉 宋紫微 张曼玉 李丽丽.干细胞来源外泌体miRNA介导心脏修复的研究进展[J].心血管病学进展,2023,(7):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
 CHEN Pengli,SONG Ziwei,ZHANG Manyu,et al.Exosomal miRNA Derived from Stem Cells in Mediating Cardiac Repair[J].Advances in Cardiovascular Diseases,2023,(8):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]

更新日期/Last Update: 2024-09-13