参考文献/References:
[1] Singer M,Deutschman CS,Seymour CW,et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA,2016,315(8):801-810.
[2] Lima,MR,Silva D. Septic cardiomyopathy:a narrative review[J]. Rev Port Cardiol,2023,42(5):471-481.
[3] Stanzani G,Duchen MR,Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(4):759-773.
[4] Denning NL,Aziz M,Gurien SD,et al. DAMPs and NETs in Sepsis[J]. Front Immunol,2019,10:2536.
[5] Sessa L,Bianchi ME. The evolution of High Mobility Group Box(HMGB) chromatin proteins in multicellular animals[J]. Gene,2007,387(1-2):133-140.
[6] Yu Y,Ou-Yang WX,Zhang H,et al. MiR-125b enhances autophagic flux to improve septic cardiomyopathy via targeting STAT3/HMGB1[J]. Exp Cell Res,2021,409(2):112842.
[7] Voelker MT,Hechaichi N,Ndongson-Dongmo B,et al. Role of the lectin-like domain of thrombomodulin in septic cardiomyopathy[J]. Life Sci,2022,306:120830..
[8] Qiu Y,Yu Y,Qin XM,et al. CircTLK1 modulates sepsis‐induced cardiomyocyte apoptosis via enhancing PARP1/HMGB1 axis–mediated mitochondrial DNA damage by sponging miR‐17‐5p[J]. J Cell Mol Med,2021,25(17):8244-8260.
[9] Fattahi F,Frydrych LM,Bian G,et al. Role of complement C5a and histones in septic cardiomyopathy[J]. Mol Immunol,2018,102:32-41.
[10] Calderwood SK,Gong J,Murshid A. Extracellular HSPs:the complicated roles of extracellular HSPs in immunity[J]. Front Immunol,2016,7:159.
[11] Song C,Zhang Y,Pei Q,et al. HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes[J]. Burns Trauma,2022,10:tkac043.
[12] Liu X,Zhang C,Zhang C,et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury[J]. In Vitro Cell Dev Biol Anim,2016,52(6):690-698.
[13] Ryu JK,Kim SJ,Rah SH,et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP,CD14,and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity,2017,46(1):38-50.
[14] Dickson K,Lehmann C. Inflammatory response to different toxins in experimental sepsis models[J]. Int J Mol Sci,2019,20(18):4341.
[15] Lopaschuk GD,Karwi QG,Tian R,et al. Cardiac energy metabolism in heart failure[J]. Circ Res,2021,128(10):1487-1513.
[16] Daniels LJ,Varma U,Annandale M,et al. Myocardial energy stress,autophagy induction,and cardiomyocyte functional responses[J]. Antioxid Redox Signal,2019,31(6):472-486.
[17] Pérez MJ,Quintanilla RA. Development or disease:duality of the mitochondrial permeability transition pore[J]. Dev Biol,2017,426(1):1-7.
[18] Kwong JQ,Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart[J]. Cell Metab,2015,21(2):206-214.
[19] Endlicher R,Drahota Z,?tefková K,et al. The mitochondrial permeability transition pore—Current knowledge of its structure,function,and regulation,and optimized methods for evaluating its functional state[J]. Cells,2023,12(9):1273.
[20] Sen P,Gupta K,Kumari A,et al. Wnt/β-Catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction[J]. Cardiovasc Toxicol,2021,21(7):517-532.
[21] Joseph LC,Kokkinaki D,Valenti MC,et al. Inhibition of NADPH oxidase 2(NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function[J]. JCI Insight,2017,2(17):e94248.
[22] Pan P,Wang X,Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy[J]. J Int Med Res,2018,46(6):2157-2169.
[23] Su LJ,Zhang JH,Gomez H,et al. Reactive oxygen species-induced lipid peroxidation in apoptosis,autophagy,and ferroptosis[J]. Oxid Med Cell Longev,2019,2019:1-13.
[24] Zorov DB,Juhaszova M,Sollott SJ. Mitochondrial reactive oxygen species(ROS) and ROS-induced ROS release[J]. Physiol Rev,2014,94(3):909-950.
[25] Li N,Zhou H,Wu H,et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction,inflammation,apoptosis and pyroptosis by activating NLRP3[J]. Redox Biol,2019,24:101215.
[26] Song P,Shen DF,Meng YY,et al. Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway[J]. Free Radic Biol Med,2020,152:186-196.
[27] Luongo TS,Lambert JP,Gross P,et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca 2+ homeostasis and viability[J]. Nature,2017,545(7652):93-97.
[28] Zhou Q,Xie M,Zhu J,et al. PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ efflux[J]. Stem Cell Res Ther,2021,12(1):269.
[29] Primeau JO,Armanious GP,Fisher ME,et al. The SarcoEndoplasmic Reticulum Calcium ATPase[J]. Subcell Biochem,2018,87:229-258.
[30] Zhang J,Liu H,Li S,et al. SERCA1 attenuates diaphragm relaxation and uptake rate of SERCA in rats with acute sepsis[J]. Mol Med Rep,2017,16(4):5015-5022.
[31] Ni L,Lin B,Shen M,et al. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis[J]. Cell Death Discov,2022,8(1):496.
[32] Zhu XX,Wang X,Jiao SY,et al. Cardiomyocyte peroxisome proliferator-activated receptor α prevents septic cardiomyopathy via improving mitochondrial function[J]. Acta Pharmacol Sin,2023,44(11):2184-2200.
[33] Wai T,Langer T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab,2016,27(2):105-117.
[34] Rodrigues T,Ferraz LS. Therapeutic potential of targeting mitochondrial dynamics in cancer[J]. Biochem Pharmacol,2020,182:114282.
[35] Haileselassie B,Mukherjee R,Joshi AU,et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol,2019,130:160-169.
[36] Wu F,Zhang YT,Teng F,et al. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction[J]. Int Immunopharmacol,2023,115:109716.
[37] Tan Y,Ouyang H,Xiao X,et al. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway[J]. Cell Stress Chaperones,2019,24(3):595-608.
[38] Mukherjee R,Tetri LH,Li SJ,et al. Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol,2023,177:28-37.
[39] Li J,Cao F,Yin HL,et al. Ferroptosis:past,present and future[J]. Cell Death Dis,2020,11(2):88.
[40] Li N,Wang W,Zhou H,et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med,2020,160:303-318.
[41] Cao G,Zeng Y,Zhao Y,et al. H2S regulation of ferroptosis attenuates sepsis?induced cardiomyopathy[J]. Mol Med Rep,2022,26(5):335.
[42] Zeng Y,Cao G,Lin L,et al. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway[J]. J Invest Surg,2023,36(1):2157521.
[43] Chen Z,Cao Z,Gui F,et al. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice[J]. Cells,2022,11(19):2992.
[44] Xiao Z,Kong B,Fang J,et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction[J]. Bioengineered,2021,12(2):9367-9376.
[45] Wang J,Guan P,Chen Y,et al. Cyclovirobuxine D pretreatment ameliorates septic heart injury through mitigation of ferroptosis[J]. Exp Ther Med,2023,26(2):407.
[46] Sheng SY,Li JM,Hu XY,et al. Regulated cell death pathways in cardiomyopathy[J]. Acta Pharmacol Sin,2023,44(8):1521-1535.
[47] Fan Y,Guan B,Xu J,et al. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy[J]. Biomed Pharmacother,2023,167:115493.