[1]夏茂银 刘思泰 贾冬霞 李静 梁财 王国春.NLRP3炎症小体在心力衰竭中的作用及相关治疗的研究进展[J].心血管病学进展,2024,(2):130.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
 XIA Maoyin,LIU Sitai,JIA Dongxia,et al.Advances In the Role of the NLRP3 Inflammasome?n Heart Failure And Related Therapy[J].Advances in Cardiovascular Diseases,2024,(2):130.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
点击复制

NLRP3炎症小体在心力衰竭中的作用及相关治疗的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年2期
页码:
130
栏目:
综述
出版日期:
2024-02-25

文章信息/Info

Title:
Advances In the Role of the NLRP3 Inflammasome?n Heart Failure And Related Therapy
作者:
夏茂银1 刘思泰2 贾冬霞2 李静1 梁财1 王国春1
(1.川北医学院临床医学系,四川 南充 637000;2.四川绵阳四0四医院,四川 绵阳 621000)
Author(s):
XIA Maoyin1LIU Sitai2JIA Dongxia2LI Jing1LIANG Cai1WANG Guochun1?/html>
(1.Department of Clinical Medicine,Sichuan North Medical College,Nanchong 637000,Sichuan,China;2.Sichuan Mianyang 404 Hospital,Mianyang 621000,Sichuan,China)
关键词:
心力衰竭心室重塑核苷酸结合寡聚化结构域样受体蛋白3炎症小体炎症
Keywords:
Heart failureVentricular remodelingNucleotide-binding oligomerization domain-like receptor protein 3 inflammasome Inflammation
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.008
摘要:
心力衰竭是许多心血管疾病的终末阶段,由于人口老龄化、心力衰竭合并症和危险因素负担加重,患病率不断增加。几十年来虽然在其诊疗方面有了巨大的进展,但目前仍缺乏具体且有效的治疗方案。核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)炎症小体是一种蛋白质复合物,可参与心室重塑病理生理过程,进而影响心力衰竭的发生和进展。抑制NLRP3炎症小体激活是减少心力衰竭不良心室重塑和改善左心室功能的可行策略。现就NLRP3炎症小体的结构功能、激活途径、在心力衰竭中的作用及相关治疗进行综述。
Abstract:
Heart failure is the end stage of many cardiovascular diseases and its prevalence is increasing due to the aging population and the increased burden of heart failure comorbidities and risk factors. Despite tremendous advances in its diagnosis and treatment over the decades,specific and effective therapeutic options are still lacking. NLRP3 inflammasome is a protein complex that can participate in the pathophysiological process of ventricular remodeling ,which in turn affects the onset and progression of heart failure. Inhibition of NLRP3 inflammasome activation is a feasible strategy to reduce adverse ventricular remodeling and improve left ventricular function in heart failure. The structural functions ,activation pathways,roles in heart failure,and related therapies of NLRP3 inflammasome are reviewed.

参考文献/References:

[1] Bozkurt B,Coats AJ,Tsutsui H,et al. Universal Definition and Classification of Heart Failure:A Report of the Heart Failure Society of America,Heart Failure Association of the European Society of Cardiology,Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure[J]. J Card Fail,2021,27(4):387-413.
[2] Mohebi R,Liu Y,van Kimmenade R,et al. Inflammation across universal definition of heart failure stages:the CASABLANCA study[J]. Eur J Heart Fail,2023,25(2):152-160.
[3] Paraskevaidis I,Farmakis D,Papingiotis G,et al. Inflammation and heart failure:searching for the enemy-reaching the entelechy[J]. J Cardiovasc Dev Dis,2023,10(1):19.
[4] Hanna A,Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J]. Cardiovasc Drugs Ther,2020,34(6):849-863.
[5] Wang Y,Li Y,Zhang W,et al. NLRP3 inflammasome:a novel insight into heart failure[J]. J Cardiovasc Transl Res,2023,16(1):166-176.
[6] Sharif H,Wang L,Wang WL,et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature,2019,570(7761):338-343.
[7] Zhang X,Xu A,Lv J,et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases[J]. Eur J Med Chem,2020,185:111822.
[8] Ghafouri-Fard S,Shoorei H,Poornajaf Y,et al. NLRP3:role in ischemia/reperfusion injuries[J]. Front Immunol,2022,13:926895.
[9] Fu J,Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol,2023,41:301-316.
[10] He Y,Hara H,Nú?ez G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci,2016,41(12):1012-1021.
[11] Karmakar M,Minns M,Greenberg EN,et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis[J]. Nat Commun,2020,11(1):2212.
[12] Li C,Chen M,He X,et al. A mini-review on ion fluxes that regulate NLRP3 inflammasome activation[J]. Acta Biochim Biophys Sin (Shanghai),2021,53(2):131-139.
[13] Leu SY,Tsang YL,Ho LC,et al. NLRP3 inflammasome activation,metabolic danger signals,and protein binding partners[J]. J Endocrinol,2023,257(2):e220184.
[14] Zhou R,Tardivel A,Thorens B,et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol,2010,11(2):136-140.
[15] Wu J,Dong E,Zhang Y,et al. The role of the inflammasome in heart failure[J]. Front Physiol,2021,12:709703.
[16] Tang X,Pan L,Zhao S,et al. SNO-MLP (S-nitrosylation of muscle LIM protein) facilitates myocardial hypertrophy through TLR3 (Toll-like receptor 3)-mediated RIP3 (receptor-interacting protein kinase 3) and NLRP3 (NOD-like receptor pyrin domain containing 3) inflammasome activation[J]. Circulation,2020,141(12):984-1000.
[17] Higashikuni Y,Liu W,Numata G,et al. NLRP3 Inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload[J]. Circulation,2023,147(4):338-355.
[18] Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[19] Pinar AA,Scott TE,Huuskes BM,et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis[J]. Pharmacol Ther,2020,209:107511.
[20] Suetomi T,Willeford A,Brand CS,et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase Ⅱ δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J]. Circulation,2018,138(22):2530-2544.
[21] Dang S,Zhang ZY,Li KL,et al. Blockade of β-adrenergic signaling suppresses inflammasome and alleviates cardiac fibrosis[J]. Ann Transl Med,2020,8(4):127.
[22] Li J,Wang Y,Wang L,et al. Low expression of miR-1929-3p mediates murine cytomegalovirus-induced fibrosis in cardiac fibroblasts via targeting endothelin a receptor/NLRP3 inflammasome pathway[J]. In Vitro Cell Dev Biol Anim 2023,59(3):179-192.
[23] Gan W,Ren J,Li T,et al. The SGK1 inhibitor EMD638683,prevents angiotensin Ⅱ-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(1):1-10.
[24] Louwe MC,Olsen MB,Kaasb?ll OJ,et al. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction[J]. JACC Basic Transl Sci,2020,5(12):1210-1224.
[25] Shen S,Wang Z,Sun H,et al. Role of NLRP3 inflammasome in myocardial ischemia-reperfusion injury and ventricular remodeling[J]. Med Sci Monit,2022,28:e934255.
[26] Wang F,Liang Q,Ma Y,et al. Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway[J]. Free Radic Biol Med,2022,182:171-181.
[27] Shen J,Wu JM,Hu GM,et al. Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the β-adrenergic receptor[J]. Cell Death Dis,2020,11(11):958.
[28] Zeng C,Duan F,Hu J,et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox Biol,2020,34:101523.
[29] Yang F,Li A,Qin Y,et al. A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J]. Mol Ther Nucleic Acids,2019,17:636-643.
[30] van Tassell BW,Arena RA,Toldo S,et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure[J]. PloS One,2012,7(3):e33438.
[31] Butts B,Butler J,Dunbar SB,et al. Effects of exercise on ASC methylation and IL-1 cytokines in heart failure[J]. Med Sci Sports Exerc,2018,50(9):1757-1766.
[32] Lim GB. Heart failure:clonal haematopoiesis,IL-1β,and the NLRP3 inflammasome in HF[J]. Nat Rev Cardiol,2018,15(4):198.
[33] Abbate A,Toldo S,Marchetti C,et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res,2020,126(9):1260-1280.
[34] Wang M,Zhao M,Yu J,et al. MCC950,a selective NLRP3 inhibitor,attenuates adverse cardiac remodeling following heart failure through improving the cardiometabolic dysfunction in obese mice[J]. Front Cardiovasc Med,2022,9:727474.
[35] Jiang X,Yang F,Ou D,et al. MCC950 ameliorates ventricular arrhythmia vulnerability induced by heart failure[J]. Bioengineered,2022,13(4):8593-8604.
[36] Aliaga J,Bonaventura A,Mezzaroma E,et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177? (Dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction[J]. Molecules,2021,26(12):3534.
[37] Wohlford GF,van Tassell BW,Billingsley HE,et al. Phase 1B,randomized,double-blinded,dose escalation,single-center,repeat dose safety and pharmacodynamics study of the oral NLRP3 Inhibitor dapansutrile in subjects with NYHA Ⅱ-Ⅱ systolic heart failure[J]. J Cardiovasc Pharmacol,2020,77(1):49-60.
[38] Liao Y,Liu K,Zhu L. Emerging roles of inflammasomes in cardiovascular diseases[J]. Front Immunol,2022,13:834289.
[39] Shen S,Duan J,Hu J,et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J]. Eur J Pharmacol,2022,929:175126.
[40] Mewton N,Roubille F,Bresson D,et al. Effect of colchicine on myocardial injury in acute myocardial infarction[J]. Circulation,2021,144(11):859-869.
[41] Deftereos S,Giannopoulos G,Angelidis C,et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction:a pilot study[J]. Circulation,2015,132(15):1395-1403.
[42] Byrne NJ,Matsumura N,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure[J]. Circ Heart Fail,2020,13(1):e006277.
[43] Li R,Lu K,Wang Y,et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression[J]. Biochem Biophys Res Commun,2017,485(1):69-75.
[44] Wang Y,Wu Y,Chen J,et al. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation[J]. Cardiology,2013,126(1):1-11.
[45] Audia JP,Yang XM,Crockett ES,et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function[J]. Basic Res Cardiol,2018,113(5):32.
[46] Everett BM,Cornel JH,Lainscak M,et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure[J]. Circulation,2019,139(10):1289-1299.
[47] van Tassell BW,Canada J,Carbone S,et al. Interleukin-1 blockade in recently decompensated systolic heart failure:results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial)[J]. Circ Heart Fail,2017,10(11):e004373.
[48] Abbate A,Trankle CR,Buckley LF,et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction[J]. J Am Heart Assoc,2020,9(5):e014941.
[49] Quader M,Mezzaroma E,Kenning K,et al. Modulation of interleukin-1 and -18 mediated injury in donation after circulatory death mouse hearts[J]. J Surg Res,2021,257:468-476.
[50] Xiao H,Li H,Wang JJ,et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult[J]. Eur Heart J,2018,39(1):60-69.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(2):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(2):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(2):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(2):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(2):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(2):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]费美莹 姜东炬.心力衰竭药物沙库巴曲缬沙坦的研究进展[J].心血管病学进展,2020,(2):122.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.005]
 FEI Meiying J IANG Dongju.Heart Failure Drug Sacubitril Valsartan[J].Advances in Cardiovascular Diseases,2020,(2):122.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.005]
[12]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(2):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2024-03-29