参考文献/References:
[1] Bozkurt B,Coats AJ,Tsutsui H,et al. Universal Definition and Classification of Heart Failure:A Report of the Heart Failure Society of America,Heart Failure Association of the European Society of Cardiology,Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure[J]. J Card Fail,2021,27(4):387-413.
[2] Mohebi R,Liu Y,van Kimmenade R,et al. Inflammation across universal definition of heart failure stages:the CASABLANCA study[J]. Eur J Heart Fail,2023,25(2):152-160.
[3] Paraskevaidis I,Farmakis D,Papingiotis G,et al. Inflammation and heart failure:searching for the enemy-reaching the entelechy[J]. J Cardiovasc Dev Dis,2023,10(1):19.
[4] Hanna A,Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J]. Cardiovasc Drugs Ther,2020,34(6):849-863.
[5] Wang Y,Li Y,Zhang W,et al. NLRP3 inflammasome:a novel insight into heart failure[J]. J Cardiovasc Transl Res,2023,16(1):166-176.
[6] Sharif H,Wang L,Wang WL,et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature,2019,570(7761):338-343.
[7] Zhang X,Xu A,Lv J,et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases[J]. Eur J Med Chem,2020,185:111822.
[8] Ghafouri-Fard S,Shoorei H,Poornajaf Y,et al. NLRP3:role in ischemia/reperfusion injuries[J]. Front Immunol,2022,13:926895.
[9] Fu J,Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol,2023,41:301-316.
[10] He Y,Hara H,Nú?ez G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci,2016,41(12):1012-1021.
[11] Karmakar M,Minns M,Greenberg EN,et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis[J]. Nat Commun,2020,11(1):2212.
[12] Li C,Chen M,He X,et al. A mini-review on ion fluxes that regulate NLRP3 inflammasome activation[J]. Acta Biochim Biophys Sin (Shanghai),2021,53(2):131-139.
[13] Leu SY,Tsang YL,Ho LC,et al. NLRP3 inflammasome activation,metabolic danger signals,and protein binding partners[J]. J Endocrinol,2023,257(2):e220184.
[14] Zhou R,Tardivel A,Thorens B,et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol,2010,11(2):136-140.
[15] Wu J,Dong E,Zhang Y,et al. The role of the inflammasome in heart failure[J]. Front Physiol,2021,12:709703.
[16] Tang X,Pan L,Zhao S,et al. SNO-MLP (S-nitrosylation of muscle LIM protein) facilitates myocardial hypertrophy through TLR3 (Toll-like receptor 3)-mediated RIP3 (receptor-interacting protein kinase 3) and NLRP3 (NOD-like receptor pyrin domain containing 3) inflammasome activation[J]. Circulation,2020,141(12):984-1000.
[17] Higashikuni Y,Liu W,Numata G,et al. NLRP3 Inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload[J]. Circulation,2023,147(4):338-355.
[18] Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[19] Pinar AA,Scott TE,Huuskes BM,et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis[J]. Pharmacol Ther,2020,209:107511.
[20] Suetomi T,Willeford A,Brand CS,et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase Ⅱ δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J]. Circulation,2018,138(22):2530-2544.
[21] Dang S,Zhang ZY,Li KL,et al. Blockade of β-adrenergic signaling suppresses inflammasome and alleviates cardiac fibrosis[J]. Ann Transl Med,2020,8(4):127.
[22] Li J,Wang Y,Wang L,et al. Low expression of miR-1929-3p mediates murine cytomegalovirus-induced fibrosis in cardiac fibroblasts via targeting endothelin a receptor/NLRP3 inflammasome pathway[J]. In Vitro Cell Dev Biol Anim 2023,59(3):179-192.
[23] Gan W,Ren J,Li T,et al. The SGK1 inhibitor EMD638683,prevents angiotensin Ⅱ-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(1):1-10.
[24] Louwe MC,Olsen MB,Kaasb?ll OJ,et al. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction[J]. JACC Basic Transl Sci,2020,5(12):1210-1224.
[25] Shen S,Wang Z,Sun H,et al. Role of NLRP3 inflammasome in myocardial ischemia-reperfusion injury and ventricular remodeling[J]. Med Sci Monit,2022,28:e934255.
[26] Wang F,Liang Q,Ma Y,et al. Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway[J]. Free Radic Biol Med,2022,182:171-181.
[27] Shen J,Wu JM,Hu GM,et al. Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the β-adrenergic receptor[J]. Cell Death Dis,2020,11(11):958.
[28] Zeng C,Duan F,Hu J,et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox Biol,2020,34:101523.
[29] Yang F,Li A,Qin Y,et al. A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J]. Mol Ther Nucleic Acids,2019,17:636-643.
[30] van Tassell BW,Arena RA,Toldo S,et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure[J]. PloS One,2012,7(3):e33438.
[31] Butts B,Butler J,Dunbar SB,et al. Effects of exercise on ASC methylation and IL-1 cytokines in heart failure[J]. Med Sci Sports Exerc,2018,50(9):1757-1766.
[32] Lim GB. Heart failure:clonal haematopoiesis,IL-1β,and the NLRP3 inflammasome in HF[J]. Nat Rev Cardiol,2018,15(4):198.
[33] Abbate A,Toldo S,Marchetti C,et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res,2020,126(9):1260-1280.
[34] Wang M,Zhao M,Yu J,et al. MCC950,a selective NLRP3 inhibitor,attenuates adverse cardiac remodeling following heart failure through improving the cardiometabolic dysfunction in obese mice[J]. Front Cardiovasc Med,2022,9:727474.
[35] Jiang X,Yang F,Ou D,et al. MCC950 ameliorates ventricular arrhythmia vulnerability induced by heart failure[J]. Bioengineered,2022,13(4):8593-8604.
[36] Aliaga J,Bonaventura A,Mezzaroma E,et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177? (Dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction[J]. Molecules,2021,26(12):3534.
[37] Wohlford GF,van Tassell BW,Billingsley HE,et al. Phase 1B,randomized,double-blinded,dose escalation,single-center,repeat dose safety and pharmacodynamics study of the oral NLRP3 Inhibitor dapansutrile in subjects with NYHA Ⅱ-Ⅱ systolic heart failure[J]. J Cardiovasc Pharmacol,2020,77(1):49-60.
[38] Liao Y,Liu K,Zhu L. Emerging roles of inflammasomes in cardiovascular diseases[J]. Front Immunol,2022,13:834289.
[39] Shen S,Duan J,Hu J,et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J]. Eur J Pharmacol,2022,929:175126.
[40] Mewton N,Roubille F,Bresson D,et al. Effect of colchicine on myocardial injury in acute myocardial infarction[J]. Circulation,2021,144(11):859-869.
[41] Deftereos S,Giannopoulos G,Angelidis C,et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction:a pilot study[J]. Circulation,2015,132(15):1395-1403.
[42] Byrne NJ,Matsumura N,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure[J]. Circ Heart Fail,2020,13(1):e006277.
[43] Li R,Lu K,Wang Y,et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression[J]. Biochem Biophys Res Commun,2017,485(1):69-75.
[44] Wang Y,Wu Y,Chen J,et al. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation[J]. Cardiology,2013,126(1):1-11.
[45] Audia JP,Yang XM,Crockett ES,et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function[J]. Basic Res Cardiol,2018,113(5):32.
[46] Everett BM,Cornel JH,Lainscak M,et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure[J]. Circulation,2019,139(10):1289-1299.
[47] van Tassell BW,Canada J,Carbone S,et al. Interleukin-1 blockade in recently decompensated systolic heart failure:results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial)[J]. Circ Heart Fail,2017,10(11):e004373.
[48] Abbate A,Trankle CR,Buckley LF,et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction[J]. J Am Heart Assoc,2020,9(5):e014941.
[49] Quader M,Mezzaroma E,Kenning K,et al. Modulation of interleukin-1 and -18 mediated injury in donation after circulatory death mouse hearts[J]. J Surg Res,2021,257:468-476.
[50] Xiao H,Li H,Wang JJ,et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult[J]. Eur Heart J,2018,39(1):60-69.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(2):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(2):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(2):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(2):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(2):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(2):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]费美莹 姜东炬.心力衰竭药物沙库巴曲缬沙坦的研究进展[J].心血管病学进展,2020,(2):122.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.005]
FEI Meiying J IANG Dongju.Heart Failure Drug Sacubitril Valsartan[J].Advances in Cardiovascular Diseases,2020,(2):122.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.005]
[12]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(2):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]