[1]宇文雅 王西强 刘静 刘仲伟.脂肪酸代谢紊乱与糖尿病血管微循环障碍[J].心血管病学进展,2024,(2):168.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.015]
 YU Wenya,WANG Xiqiang,LIU Jing,et al.Fatty Acid Metabolism Disorders and?iabetic Vascular Microcirculation Dysfunction[J].Advances in Cardiovascular Diseases,2024,(2):168.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.015]
点击复制

脂肪酸代谢紊乱与糖尿病血管微循环障碍()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年2期
页码:
168
栏目:
综述
出版日期:
2024-02-25

文章信息/Info

Title:
Fatty Acid Metabolism Disorders and?iabetic Vascular Microcirculation Dysfunction
作者:
宇文雅12 王西强 23 刘静 23 刘仲伟 23
(1.西藏民族大学医学院,陕西 咸阳 712082;2.陕西省人民医院心血管内科,陕西 西安 710068;3.陕西省中医药管理局中西医结合重点研究室,陕西 西安 710068)
Author(s):
YU Wenya12WANG Xiqiang23LIU Jing23LIU Zhongwei23
?1.School of Medicine,Xizang Minzu University,Xianyang 712082,Shaanxi,China;2.Department of Cardiology,Shaanxi Provincial Peoples Hospital,Xian 710068,Shaanxi,China;3.Integretive Traditional Chinese Medicine and Western Medicien Key Lab, Research Office of Shaanxi Administration of Traditional Chinses Medicine,Xian 710068,Shaanxi,China)
关键词:
糖尿病脂肪酸代谢微循环障碍
Keywords:
Diabetes mellitusFatty acid metabolismMicrocirculation dysfunction
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.015
摘要:
脂肪酸过氧化物、脂质过氧化产物以及饱和脂肪酸是糖尿病脂肪酸代谢紊乱的特征性病理代谢产物,可通过诱导血小板聚集、引发血管收缩、增加血管通透性、诱发炎症反应等一系列机制,导致构成微循环结构的重要细胞发生功能障碍和损伤,诱发微循环障碍。现对上述机制及相关新型治疗策略做一综述,为其临床防治提供新的线索与思路。
Abstract:
Fatty acid peroxidation products,lipid peroxidation products,and saturated fatty acids are characteristic pathological metabolic products of fatty acid metabolic disorder in diabetes. They can induce platelet aggregation, trigger vasoconstriction,increased vascular permeability,and provoke inflammatory responses. These mechanisms lead to dysfunction and damage of vital cells that constitute the microcirculation,thus inducing microcirculatory disorders. This review discusses the above mechanisms and related novel therapeutic strategies,providing new clues and ideas for their clinical prevention and treatment

参考文献/References:

[1] Wali JA,Jarzebska N,Raubenheimer D,et al. Cardio-metabolic effects of high-fat diets and their underlying mechanisms—A narrative review [J]. Nutrients,2020,12(5):1505.
[2] Lytrivi M,Castell AL,Poitout V,et al. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes[J]. J Mol Biol ,2020,432(5):1514-1534.
[3] 中国微循环学会糖尿病与微循环专业委员会. 糖尿病微循环障碍临床用药专家共识(2021年版)[J]. 中国医学前沿杂志(电子版),2021,13(4):49-57.
[4] Jaganjac M,Zarkovic N. Lipid peroxidation linking diabetes and cancer:the importance of 4-Hydroxynonenal[J]. Antioxid Redox Signal,2022,37(16-18):1222-1233.
[5] Demir S,Nawroth PP,Hering S,et al. Emerging targets in type 2 diabetes and diabetic complications[J]. Adv Sci (Weinh),2021,8(18):e2100275.
[6] Ali J,Aziz MA,Rashid MMO,et al. Propagation of age-related diseases due to the changes of lipid peroxide and antioxidant levels in elderly people:a narrative review[J]. Health Sci Rep,2022,5(3):e650.
[7] Lovegrove JA. Dietary dilemmas over fats and cardiometabolic risk[J]. Proc Nutr Soc,2020,79(1):11-21.
[8] Cheng YY,Qu SL,Liu YJ,et al. Meta-analysis of the epidemiology of microvascular complications in people with type 2 diabetes in mainland China[J]. Glob J Obes Diabetes Metab Syndr,2020,7(2):18-23.
[9]Dasu MR,Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors[J]. Am J Physiol Endocrinol Metab,2011,300(1):E145-E154.
[10] Mas-Bargues C,Escrivá C,Dromant M ,et al. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease[J]. Arch Biochem Biophys,2021,709:108941.
[11] Brunet P,Gondouin B,Duval-Sabatier A,et al. Does uremia cause vascular dysfunction?[J]. Kidney Blood Press Res,2011,34(4):248-290.
[12] Rudnicka E,Suchta K,Grymowicz M,et al. Chronic low grade inflammation in pathogenesis of PCOS[J]. Int J Mol Sci,2021,22(7):3789.
[13] Ni H. The platelet “sugar high” in diabetes[J]. Blood,2012,119(25):5949-5951.
[14] Sun Q,Yue P,Deiuliis JA,et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity[J]. Circulation,2009,119(4):538-546.
[15] Salmon AHJ,Satchell SC. Endothelial glycocalyx dysfunction in disease:albuminuria and increased microvascular permeability[J]. J Pathol,2012,226(4):562-574.
[16] Cooper ID,Crofts CAP,DiNicolantonio JJ,et al. Relationships between hyperinsulinaemia,magnesium,vitamin D,thrombosis and COVID-19:rationale for clinical management[J]. Open Heart,2020,7(2):e001356.
[17] Lozano I,van der Werf R,Bietiger W,et al. High-fructose and high-fat diet-induced disorders in rats:impact on diabetes risk,hepatic and vascular complications[J]. Nutr Metab(Lond),2016,13:15.
[18] Dham D,Roy B,Gowda A,et al. 4-Hydroxy-2-nonenal,a lipid peroxidation product,as a biomarker in diabetes and its complications:challenges and opportunities[J]. Free Radic Res,2021,55(5):547-561.
[19] Whitsett J,Picklo MJ Sr ,Vasquez-Vivar J. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation[J]. Arterioscler Thromb Vasc Biol,2007,27(11):2340-2347.
[20] Guo JM,Liu AJ,Zang P,et al. ALDH2 protects against stroke by clearing 4-HNE[J]. Cell Res,2013,23(7):915-930.
[21] Hosoi T,Kuwamura A,Thon M,et al. Possible involvement of 4-hydroxy-2-nonenal in the pathogenesis of leptin resistance in obesity[J]. Am J Physiol Cell Physiol,2019,316(5):C641-C648.
[22] Ramasamy S,Parthasarathy S,Harrison DG. Regulation of endothelial nitric oxide synthase gene expression by oxidized linoleic acid[J]. J Lipid Res,1998,39(2):268-276.
[23] Natarajan R,Reddy MA,Malik KU,et al. Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,2001,21(9):1408-1413.
[24] Biswas P,Swaroop S,Dutta N,et al. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis[J]. Free Radic Biol Med,2023,195:309-328.
[25] Duryee MJ,Clemens DL,Opperman PJ,et al. Malondialdehyde-acetaldehyde modified (MAA) proteins differentially effect the inflammatory response in macrophage,endothelial cells and animal models of cardiovascular disease[J]. Int J Mol Sci,2021,22(23):12948.
[26] Sapkota M,DeVasure JM,Kharbanda KK,et al. Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1)[J]. Respir Res,2017,18(1):36.
[27] Lawrence JR,Campbell GR,Barrington H,et al. Clinical and biochemical determinants of plasma lipid peroxide levels in type 2 diabetes[J]. Ann Clin Biochem,1998,35(Pt3):387-392.
[28] Pavelkina VF,Abrashina IV,Kovalenko EN,et al. Oxidative stress and the state of antioxidant defenses in hemorrhagic fever with renal syndrome[J]. Pulse,2021,23(11):48-50.
[29] Jin R,Yang R,Cui C,et al. Ferroptosis due to cystathionine γ lyase/hydrogen sulfide downregulation under high hydrostatic pressure exacerbates VSMC dysfunction[J]. Front Cell Dev Biol,2022,10:829316.
[30] Hidayat R,Wulandari P. Effects of andrographis paniculata (Burm. F.) extract on diabetic nephropathy in rats[J]. Rep Biochem Mol Biol,2021,10(3):445-454.
[31] Palomer X,Pizarro-Delgado JP,Barroso E,et al. Palmitic and oleic acid:the Yin and Yang of fatty acids in type 2 diabetes mellitus[J]. Trends Endocrinol Metab,2018,29(3):178-190.
[32] Knebel B,Müller-Wieland D,Kotzka J. Lipodystrophies—Disorders of the fatty tissue[J]. Int J Mol Sci,2020,21(22):8778.
[33] Tang C,Deng X,Qu J,et al. Fenofibrate attenuates renal tubular cell apoptosis by up-regulating MCAD in diabetic kidney disease[J]. Drug Des Devel Ther,2023,17:1503-1514.
[34] Pillon NJ,Azizi PM,Li YE,et al. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis[J]. Am J Physiol Endocrinol Metab,2015,309(1):E35-E44.
[35] Sindhu S,Akhter N,Wilson A,et al. MIP-1α expression induced by co-stimulation of human monocytic cells with palmitate and TNF-α involves the TLR4-IRF3 pathway and is amplified by oxidative stress[J]. Cells ,2020,9(8):1799.
[36] Spigoni V,Fantuzzi F,Fontana A,et al. Stearic acid at physiologic concentrations induces in vitro lipotoxicity in circulating angiogenic cells[J]. Atherosclerosis,2017,265:162-171.
[37] Karasawa T,Kawashima A,Usui-Kawanishi F,et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages[J]. Arterioscler Thromb Vasc Biol,2018,38(4):744-756.
[38] Rahimi-Madiseh M,Malekpour-Tehrani A,Bahmani M,et al. The research and development on the antioxidants in prevention of diabetic complications[J]. Asian Pac J Trop Med,2016,9(9):825-831.
[39] Augustine J,Troendle EP,Barabas P,et al. The role of lipoxidation in the pathogenesis of diabetic retinopathy[J]. Front Endocrinol (Lausanne),2021,11:621938.
[40] Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress:current state[J]. Nutr J,2016,15(1):71.
[41] Gu J,Geng K,Guo M,et al. Targeting pyroptosis:new insights into the treatment of diabetic microvascular complications[J]. Evid Based Complement Alternat Med,2022,2022:5277673.
[42] Bahr TA,Bakri SJ. Update on the management of diabetic retinopathy:anti-VEGF agents for the prevention of complications and progression of nonproliferative and proliferative retinopathy[J]. Life(Basel),2023,13(5):1098
[43] Zhang M,Dong Z,Dong W,et al. Role of Takeda G protein?coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)[J]. Exp Ther Med,2022,24(5):674.
[44] Jiao S,Dong Y,Chang X,et al. Effects of α lipoic acid combined with olmesartan medoxomil on blood glucose and oxidation indicators in patients with diabetic nephropathy:a protocol for a parallel,randomized,double-blind,controlled clinical trial[J]. Medicine(Baltimore),2022,101(17):e29080.
[45] Thakur S,Gupta SK,Ali V,et al. Aldose reductase:a cause and a potential target for the treatment of diabetic complications[J]. Arch Pharm Res,2021,44(7):655-667.
[46] Xuan C,Ding W,Zhan L,et al. Potential Mechanisms of Yiqi Jiedu Huayu Decoction in the Treatment of Diabetic Microvascular Complications Based on Network Analysis,Molecular Docking,and Experimental Validation[J]. Evid Based Complement Alternat Med,2023,2023:5034687.
[47] Gmitrov J. Static Magnetic Field Versus Systemic Calcium Channel Blockade Effect on Microcirculation:Possible Mechanisms and Clinical Implementation[J]. Bioelectromagnetics,2020,41(6):447-457.

相似文献/References:

[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
 ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(2):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
 HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(2):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[3]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
 XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(2):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[4]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(2):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[5]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(2):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[6]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
 Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(2):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
[7]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[8]高婧晗 刘飞 杨晓蕾 夏云龙.钙离子稳态的调控在糖尿病相关心房颤动中的作用[J].心血管病学进展,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
 GAO Jinghan,LIU Fei,YANG Xiaolei,et al.Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(2):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
[9]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
 YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
[10]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(2):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]

更新日期/Last Update: 2024-03-29