[1]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
 WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
点击复制

线粒体动力学在糖尿病心肌病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年12期
页码:
1111
栏目:
综述
出版日期:
2023-12-25

文章信息/Info

Title:
Mitochondrial Dynamics in Diabetic Cardiomyopathy
作者:
王一硕 1 罗皓文 1 王晨旭 1 孙路轩 1 阿如汗 1 张茵 1 常盼 2
西安医学院第二临床医学院麻醉系,陕西 西安 710038 ;2.西安医学院第二附属医院心内科,陕西 西安 710038 )
Author(s):
WANG Yishuo 1LUO Haowen 1WANG Chenxu 1SUN Luxuan 1Aruhan1ZHANG Yin 1CHANG Pan 2
(1. Department of Anesthesiathe Second Clinical Medical CollegeXian Medical CollegeXian 710038ShaanxiChina2. Department of Cardiologythe Second Affiliated Hospital of Xian Medical CollegeXian 710038ShaanxiChina)
关键词:
糖尿病心肌病线粒体动力学融合分裂平衡
Keywords:
Diabetic cardiomyopathyMitochondrial dynamicsFusionFissionBalance
DOI:
10.16806/j.cnki.issn.1004-3934.2023.12.013
摘要:
糖尿病心肌病是糖尿病患者死亡的主要原因之一,其发病机制尚未完全阐明。线粒体作为细胞能量工厂,与糖尿病心肌病的发病及进展密切相关。既往研究已经发现,线粒体能量代谢紊乱、氧化应激增强、钙稳态失调和线粒体自噬等因素与糖尿病心肌病密切相关。近年来,线粒体动力学作为上述损伤机制的上游事件得到广泛关注。现将重点阐述线粒体动力学在糖尿病心肌病的发病机制及演进过程中的研究进展。
Abstract:
Diabetic cardiomyopathy is one of the main causes of death in diabetic patients,and its pathogenesis has not been fully elucidated. Mitochondria,as the cell’s energy factories,are closely related to the occurrence and progression of diabetic cardiomyopathy. Previous studies have found that mitochondrial energy metabolism disorders,oxidative stress,calcium homeostasis imbalance,and mitochondrial autophagy are closely related to diabetic cardiomyopathy. In recent years,mitochondrial dynamics as an upstream event of these pathological mechanisms have attracted widespread attention. This article reviews the role of mitochondrial dynamics in the pathogenesis and progression of diabetic cardiomyopathy

参考文献/References:

[1].Fernandes CJ,Steigner ML,Piazza G,et al. Collaborative cardiology and pulmonary management of pulmonary hypertension[J]. Chest,2019,156(2):200-202.
[2].中国医师协会中西医结合医师分会内分泌与代谢病学专业委员会.糖尿病心肌病病证结合诊疗指南(2021-12-31)[J]. 世界中医药,2022,17(12):1641-1653.
[3].张倩,卫晓红,陈洁,等.慢性心力衰竭常用动物模型的研究进展及其在中医药研究中的应用[J].中国中药杂志,2023,48(3):614-624.
[4].Ritchie RH,Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res,2020,126(11):1501-1525.
[5].Audzeyenka I,Rachubik P,Typiak M,et al. Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes[J]. Exp Cell Res,2021,407(1):112758.
[6].Zhao X,Liu S,Wang X,et al. Diabetic cardiomyopathy:clinical phenotype and practice[J]. Front Endocrinol,2022,13:1032268.
[7].Yu R ,Liu T,Jin SB,et al. MIEF1/2 orchestrate mitochondrial dynamics through direct engagement with both the fission and fusion machineries[J]. BMC Biol,2021,19(1):229-230.
[8].Huang S,Li Z,Wu Z,et al. DDAH2 suppresses RLR-MAVS-mediated innate antiviral immunity by stimulating nitric oxide-activated,Drp1-induced mitochondrial fission[J]. Sci Signal,2021,14(678):eabc7931.
[9].Fajardo G,Coronado M,Matthews M,et al. Mitochondrial quality control in the heart:the balance between physiological and pathological stress[J]. Biomedicines,2022,10(6):1375.
[10].Noone J,O’Gorman DJ,Kenny HC. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle[J]. Trends Endocrinol Metab,2022,33(10):710-721.
[11].Bian W,Chen W,Nguyen T,et al. miR-199a overexpression enhances the potency of human induced-pluripotent stem-cell-derived cardiomyocytes for myocardial repair[J]. Front Pharmacol,2021,12:673621.
[12].Han S,Zhao F,Hsia J,et al. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo[J]. J Cell Sci,2021,134(13):jcs253443.
[13].Inagaki S,Suzuki Y,Kawasaki K,et al. Mitofusin 1 and 2 differentially regulate mitochondrial function underlying Ca2+ signaling and proliferation in rat aortic smooth muscle cells[J]. Biochem Biophys Res Commun,2023,645:137-146.
[14].胡朗. Mfn2介导的线粒体动力学障碍在糖尿病心肌病中的作用及分子机制[D].空军军医大学,2019.
[15].Morio A,Tsutsumi R,Kondo T,et al. Leucine induces cardioprotection in vitro by promoting mitochondrial function via mTOR and Opa-1 signaling[J]. Nutr Metab Cardiovasc Dis,2021,31(10):2979-2986.
[16].徐佳. 黄连素通过调控SIRT1/Opa1通路改善肝胰岛素抵抗的作用及机制研究[D].吉林:吉林大学,2020.
[17].Xu J,Zhang Y,Yu Z,et al. Berberine mitigates hepatic insulin resistance by enhancing mitochondrial architecture via the SIRT1/Opa1 signalling pathway[J]. Acta Biochim Biophys Sin,2022,54(10):1464-1475.
[18].Chehaitly A,Guihot AL,Proux C,et al. Altered mitochondrial Opa1-related fusion in mouse promotes endothelial cell dysfunction and atherosclerosis[J]. Antioxidants,2022,11(6):1078.
[19].Yu R,Jin SB,Ankarcrona M,et al. The molecular assembly state of Drp1 controls its association with the mitochondrial recruitment receptors Mff and MIEF1/2[J]. Front Cell Dev Biol,2021,9:706687.
[20].刘振华,刘银姬,牛津,等.U50,488H抑制心肌细胞缺氧/复氧诱导Drp1线粒体转位的作用及机制[J].心脏杂志,2020,32(6):565-571.
[21].Ostaszewska-Bugajska M,Podgórska A,Szal B. Markers for mitochondrial ROS status[J]. Methods Mol Biol,2022,2363:199-213.
[22].Bland AR,Payne FM,Ashton JC,et al. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury[J]. Pharmacol Res,2022,175:105986.
[23].Wu QR,Zheng DL,Liu PM,et al. High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy[J]. Cell Death Dis,2021,12(2):216.
[24].Alcántar-Fernández J,González-Maciel A,Reynoso-Robles R,et al. High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans[J]. PloS One,2019,14(12):e0226652.
[25].Robson A. A novel cardioprotective function for DRP1 inhibition[J]. Nat Rev Cardiol,2021,18(5):306-307.
[26].Kim D,Sankaramoorthy A,Roy S. Downregulation of Drp1 and Fis1 inhibits mitochondrial fission and prevents high glucose-induced apoptosis in retinal endothelial cells[J]. Cells,2020,9(7):1662.
[27].Yang J,Chen P,Cao Y,et al. Chemical inhibition of mitochondrial fission via targeting the DRP1-receptor interaction[J]. Cell Chem Biol,2023,30(3):278-294.e11.
[28].刘小丽,廖达文,王星琛,等.BLOC-3介导Rab32线粒体定位改变对肝癌细胞生长的作用研究[J].中国癌症防治杂志,2023,15(2):129-137.
[29].宋元秀,崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,42(2):162-166.
[30].Liu A,Kage F,Higgs HN. Mff oligomerization is required for Drp1 activation and synergy with actin filaments during mitochondrial division[J]. Mol Biol Cell,2021,32(20):ar5.
[31].Jin JY,Wei XX,Zhi XL,et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin,2021,42(5):655-664.
[32].Sultan A,Jacobson M,Adeghate E,et al. Effects of obesity and diabesity on heart rhythm in the Zucker rat[J]. Clin Exp Pharmacol Physiol,2021,48(5):735-747.
[33].Gilkerson R,De La Torre P,St Vallier S. Mitochondrial OMA1 and OPA1 as gatekeepers of organellar structure/function and cellular stress response[J]. Front Cell Dev Biol,2021,9:626117.
[34].Fealy CE,Mulya A,Lai N,et al. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle[J]. J appl physiol,2014,117(3):239-245.
[35].郑宏庭,瞿华. 线粒体动力学与糖尿病并发症发病机制[J]. 第三军医大学学报,2022,44(1):64-68.
[36].Lorenzo-Almorós A,Cepeda-Rodrigo JM,Lorenzo ?. Diabetic cardiomyopathy[J]. Rev Clin Esp,2022,222(2):100-111.
[37].Méndez-López I,Sancho-Bielsa FJ,Engel T,et al. Progressive mitochondrial SOD1G93A accumulation causes severe structural,metabolic and functional aberrations through OPA1 down-regulation in a mouse model of amyotrophic lateral sclerosis[J]. Int J Mol Sci,2021,22(15):8194.
[38].Ramzan R,Dolga AM,Michels S,et al. Cytochrome c oxidase inhibition by ATP decreases mitochondrial ROS production[J]. Cells,2022,11(6):992.
[39].Li H. Physiologic and pathophysiologic roles of AKAP12[J]. Sci Prog,2022,105(3):368504221109212.
[40].Yuan M,Gong M,Zhang Z,et al. Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes,and mitofusin-2 downregulation prevents mitochondrial dysfunction and subsequent cell death[J]. Oxid Med Cell Longev,2020,2020:6569728.
[41].Zhi F,Zhang Q,Liu L,et al. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments[J].Cell Stress Chaperones,2023.DOI: 10.1007/s12192-023-01361-w.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(12):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(12):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(12):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(12):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(12):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(12):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[7]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(12):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(12):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(12):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
[10]董泽耀 庄小密 鲁静.模式识别受体在糖尿病心肌病中的研究进展[J].心血管病学进展,2024,(6):548.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.016]
 DONG Zeyao,ZHUANG Xiaomi,LU Jing?/html>.Research Progress of Pattern Recognition Receptors in?iabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(12):548.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.016]
[11]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(12):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]

更新日期/Last Update: 2024-01-19