[1]汪意人 韩虎魁 程攀科 李刚 陶剑虹.基于心肌梗死微环境的生物材料响应设计[J].心血管病学进展,2023,(12):1107.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.012]
 WANG Yiren,HAN Hukui,CHENG Panke,et al.Design of Biomaterials Based on Myocardial Infarction Microenvironment Response[J].Advances in Cardiovascular Diseases,2023,(12):1107.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.012]
点击复制

基于心肌梗死微环境的生物材料响应设计()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年12期
页码:
1107
栏目:
综述
出版日期:
2023-12-25

文章信息/Info

Title:
Design of Biomaterials Based on Myocardial Infarction Microenvironment Response
作者:
汪意人1 韩虎魁 12 程攀科 12 李刚 12 陶剑虹 12
(1.电子科技大学医学院,四川 成都 611731;2.四川省医学科学院·四川省人民医院心血管内科,四川 成都 610072)
Author(s):
WANG Yiren1HAN Hukui12CHENG Panke12LI Gang12TAO Jianhong12
(1.Medical School,University of Electronic Science and Technology of China,Chengdu 611731 ,Sichuan,China;2.Department of Cardiology,Sichuan Academy of Medical SciencesSichuan Provincial People’s Hospital,Chengdu 610072 ,Sichuan,China)
关键词:
生物材料心肌梗死靶向递送系统微环境
Keywords:
Biomaterials Myocardial infarction Targeted delivery systems Microenvironment
DOI:
10.16806/j.cnki.issn.1004-3934.2023.12.012
摘要:
生物材料为梗死后的心肌组织提供支撑作用,并可携带药物、生长因子和细胞等促进梗死区域内细胞的增殖和分化,现已成为治疗心肌梗死的热点。微环境响应的功能化生物材料较传统药物递送系统具有更好的靶向性和药物控释性。心肌梗死后微环境的变化可作为智能生物材料的触发和控释条件,如pH下降、活性氧堆积和炎症细胞聚集等。现对心肌梗死后触发和调控智能生物材料的微环境因素进行综述。
Abstract:
Biomaterials provide support for myocardial tissue after infarction,and can load drugs,growth factors and cells to promote the proliferation and differentiation of cells in the infarct area,which has become a hot spot in the treatment of myocardial infarction. Functionalized biomaterials respond to changes in the microenvironment with better targeted and controlled drug release than traditional drug delivery systems. Changes in the microenvironment after myocardial infarction can be used as trigger conditions for smart biomaterials,such as pH decrease,reactive oxygen species accumulation,and inflammatory cell aggregation. This review provide an overview of the microenvironmental factors that trigger and regulate smart biomaterials after myocardial infarction

参考文献/References:

[1].Soni SS,D’Elia AM,Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches[J]. Drug Deliv Transl Res,2023,13(7):1983-2014.
[2].Yang JM,Olanrele OS,Zhang X,et al. Fabrication of hydrogel materials for biomedical applications[J]. Adv Exp Med Biol,2018,1077:197-224.
[3].Daseke MJ 2nd,Chalise U,Becirovic-Agic M,et al. Neutrophil signaling during myocardial infarction wound repair[J]. Cell Signal,2021,77:109816.
[4].Nian W,Huang Z,Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction:from basic to clinical translation[J]. Front Immunol,2023,14:1097295.
[5].Zhou L,Kou DQ. Correlation between acute myocardial infarction complicated with cerebral infarction and expression levels of MMP-2 and MMP-9[J]. Eur Rev Med Pharmacol Sci,2019,23(1):297-302.
[6].Ramachandra CJA,Hernandez-Resendiz S,Crespo-Avilan GE,et al. Mitochondria in acute myocardial infarction and cardioprotection[J]. EBioMedicine,2020,57:102884.
[7].Odunewu-Aderibigbe A,Fliegel L. The Na(+) /H(+) exchanger and pH regulation in the heart[J]. IUBMB Life,2014,66(10):679-685.
[8].Xia H,Zahra A,Jia M,et al. Na+/H+ exchanger 1 ,a potential therapeutic drug target for cardiac hypertrophy and heart failure[J]. Pharmaceuticals(Basel),2022,15(7):875.
[9].Teixeira RB,Pfeiffer M,Zhang P,et al. Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction[J]. Basic Res Cardiol,2023,118(1):3.
[10].Liu Z,Xu Q,Yang Q,et al. Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction[J]. Redox Biol,2019,22:101151.
[11].’t Hart DC,van der Vlag J,Nije nhuis T. Laminar flow substantially affects the morphology and functional phenotype of glomerular endothelial cells[J]. PLoS One,2021,16(5):e0251129.
[12].Garanich JS,Pahakis M,Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity[J]. Am J Physiol Heart Circ Physiol,2005,288(5):H2244-H2252.
[13].Borrelli MA,Turnquist HR,Little SR. Biologics and their delivery systems:trends in myocardial infarction[J]. Adv Drug Deliv Rev,2021,173:181-215.
[14].Yoshizaki Y,Takai H,Mayumi N,et al. Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells[J]. Sci Technol Adv Mater,2021,22(1):627-642.
[15].Karam JP,Muscari C,Sindji L,et al. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering[J]. J Control Release,2014,192:82-94.
[16].Kumbhani DJ,Healey NA,Birjiniuk V,et al. Determinants of regional myocardial acidosis during cardiac surgery[J]. Surgery,2004,136(2):190-198.
[17].Shkand TV,Chizh MO,Sleta IV,et al. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes[J]. Methods Appl Fluoresc,2016,4(4):044002.
[18].Garbern JC,Minami E,Stayton PS,et al. Delivery of basic fibroblast growth factor with a pH-responsive,injectable hydrogel to improve angiogenesis in infarcted myocardium[J]. Biomaterials,2011,32(9):2407-2416.
[19].Sood N,Bhardwaj A,Mehta S,et al. Stimuli-responsive hydrogels in drug delivery and tissue engineering[J]. Drug Deliv,2016,23(3):758-780.
[20].Nguyen MM,Carlini AS,Chien MP,et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction[J]. Adv Mater,2015,27(37):5547-5552.
[21].Gurtner GC,Werner S,Barrandon Y,et al. Wound repair and regeneration[J]. Nature,2008,453(7193):314-321.
[22].Galli C,Parisi L,Piergianni M,et al. Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization[J]. Acta Biomater,2016,42:147-156.
[23].Epshtein M,Korin N. Shear targeted drug delivery to stenotic blood vessels[J]. J Biomech,2017,50:217-221.
[24].Zhang X,Sun Y,Yang R,et al. An injectable mitochondria-targeted nanodrug loaded-hydrogel for restoring mitochondrial function and hierarchically attenuating oxidative stress to reduce myocardial ischemia-reperfusion injury[J]. Biomaterials,2022,287:121656.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(12):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(12):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(12):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(12):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(12):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(12):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(12):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(12):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(12):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2024-01-19