参考文献/References:
[1] Humeres C,Frangogiannis NG. Fibroblasts in the infarcted,remodeling,and failing heart[J]. JACC Basic Transl Sci,2019,4(3):449-467.
[2] Yin R,Yin L,Li L,et al. Hypertension in China:burdens,guidelines and policy responses:a state-of-the-art review[J]. J Hum Hypertens,2022,36(2):126-134.
[3] Tadic M,Cuspidi C,Marwick TH. Phenotyping the hypertensive heart[J]. Eur Heart J,2022,43(38):3794-3810.
[4] Tahir E,Starekova J,Muellerleile K,et al. Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history[J]. JACC Cardiovasc Imaging,2018,11(9):1260-1270.
[5] Brassington K,Kanellakis P,Cao A,et al. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts[J]. Front Immunol,2022,13:1040233.
[6] Sacks D,Baxter B,Campbell BCV,et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke[J]. Int J Stroke,2018,13(6):612-632.
[7] Juliano GR,Skaf MF,Ramalho LS,et al. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease[J]. Rev Port Cardiol(Engl Ed),2020,39(2):89-96.
[8] Joshi B,Wagh G,Kaur H,et al. Zebrafish model to study angiotensinⅡ-mediated pathophysiology[J]. Biology(Basel),2021 ,10(11):1177.
[9] Huang A,Li H,Zeng C,et al. Endogenous CCN5 participates in angiotensinⅡ/TGF-β1 networking of cardiac fibrosis in high angiotensinⅡ-induced hypertensive heart failure[J]. Front Pharmacol,2020,11:1235.
[10] Ferreira NS,Tostes RC,Paradis P,et al. Aldosterone,inflammation,immune system,and hypertension[J]. Am J Hypertens,2021,34(1):15-27.
[11] de Las Heras N,Galiana A,Ballesteros S,et al. Proanthocyanidins maintain cardiac ionic homeostasis in aldosterone-induced hypertension and heart failure[J]. Int J Mol Sci,2021,22(17):9602.
[12] Zhao Y,Wang C,Wang C,et al. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease[J]. Sci Rep,2018,8(1):8996.
[13] Kotov G,Landzhov B,Stamenov N,et al. Changes in the number of mast cells,expression of fibroblast growth factor-2 and extent of interstitial fibrosis in established and advanced hypertensive heart disease[J]. Ann Anat,2020,232:151564.
[14] Tian Y,Luo J,Xu Q,et al. Macrophage depletion protects against endothelial dysfunction and cardiac remodeling in angiotensin Ⅱ hypertensive mice[J]. Clin Exp Hypertens,2021,43(8):699-706.
[15] Lv SL,Zeng ZF,Gan WQ,et al. Lp-PLA2 inhibition prevents AngⅡ-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation[J]. Acta Pharmacol Sin,2021,42(12):2016-2032.
[16] Fu Y,Yi S,Wu J,et al. In vitro suppression of xenoimmune-mediated macrophage activation by human CD4+CD25+ regulatory T cells[J]. Transplantation,2008,86(6):865-874.
[17] Wang HX,Li WJ,Hou CL,et al. CD1d-dependent natural killer T cells attenuate angiotensinⅡ-induced cardiac remodelling via IL-10 signalling in mice[J]. Cardiovasc Res,2019,115(1):83-93.
[18] Meng J,Qin Y,Chen J,et al. Treatment of hypertensive heart disease by targeting Smad3 signaling in mice[J]. Mol Ther Methods Clin Dev,2020,18:791-802.
[19] Sun X,Zhou M,Wen G,et al. Paroxetine attenuates cardiac hypertrophy via blocking GRK2 and ADRB1 interaction in hypertension[J]. J Am Heart Assoc,2021,10(1):e016364.
[20] Kostov K,Blazhev A. Changes in serum levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 in patients with essential hypertension[J]. Bioengineering(Basel),2022,9(3):119.
[21] Parente JM,Blascke de Mello MM,Silva P,et al. MMP inhibition attenuates hypertensive eccentric cardiac hypertrophy and dysfunction by preserving troponin I and dystrophin[J]. Biochem Pharmacol,2021,193:114744.
[22] Bunbupha S,Pakdeechote P,Maneesai P,et al. Carthamus Tinctorius L. extract attenuates cardiac remodeling in L-NAME-induced hypertensive rats by inhibiting the NADPH oxidase-mediated TGF-β1 and MMP-9 pathway[J]. Ann Anat,2019,222:120-128.
[23] Yang M,Song JJ,Yang XC,et al. MiRNA-122-5p inhibitor abolishes angiotensin Ⅱ-mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the apelin-AMPK-mTOR signaling[J]. In Vitro Cell Dev Biol Anim,2022,58(2):136-148.
[24] Song J,Zhang Z,Dong Z,et al. MicroRNA-122-5p aggravates angiotensinⅡ-mediated myocardial fibrosis and dysfunction in hypertensive rats by regulating the elabela/apelin-APJ and ACE2-GDF15-porimin signaling [J]. J Cardiovasc Transl Res,2022,15(3):535-547.
[25] Hua CC,Liu XM,Liang LR,et al. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J]. Front Cardiovasc Med,2021,8:784044.
[26] Mewton N,Liu CY,Croisille P,et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol,2011,57(8):891-903.
[27] Mathur S,Dreisbach JG,Karur GR,et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease:relationship to T1 mapping,late gadolinium enhancement and hypertrophy[J]. J Cardiovasc Magn Reson,2019,21(1):45.
[28] Saeed S,Tadic M,Grytaas M,et al. The value of multimodality imaging in hypertensive heart disease[J]. J Hypertens,2021,39(5):1040-1043.
[29] Chaikijurajai T,Laffin LJ,Tang WHW. Artificial intelligence and hypertension:recent advances and future outlook[J]. Am J Hypertens,2020,33(11):967-974.
[30] Varo N,Iraburu MJ,Varela M,et al. Chronic AT(1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats[J]. Hypertension,2000,35(6):1197-1202.
[31] Burke RM,Lighthouse JK,Mickelsen DM,et al. Sacubitril/valsartan decreases cardiac fibrosis in left ventricle pressure overload by restoring PKG signaling in cardiac fibroblasts[J]. Circ Heart Fail,2019,12(4):e005565.
[32] Sung YL,Lin TT,Syu JY,et al. Reverse electromechanical modelling of diastolic dysfunction in spontaneous hypertensive rat after sacubitril/valsartan therapy[J]. ESC Heart Fail,2020,7(6):4040-4050.
[33] Zhang Y,Lin X,Chu Y,et al. Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensin Ⅱ-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J]. Cardiovasc Diabetol,2021,20(1):121.
相似文献/References:
[1]孙刚,黄冠华,综述.高血压合并心力衰竭的治疗策略[J].心血管病学进展,2016,(2):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
SUN Gang,HUANG Guanhua.Treatment Strategy of Hypertension with Heart Failure[J].Advances in Cardiovascular Diseases,2016,(7):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
[2]范贵娟,综述,徐瑞,等.盐敏感性高血压的研究进展[J].心血管病学进展,2016,(4):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
FAN Guijuan,XU Rui.Research Progress of Salt Sensitive Hypertension[J].Advances in Cardiovascular Diseases,2016,(7):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
[3]陈源源.钙通道阻滞剂在降压治疗中的应用[J].心血管病学进展,2015,(6):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
CHEN Yuanyuan.Application of Calcium Channel Blockers in Hypertension Treatment[J].Advances in Cardiovascular Diseases,2015,(7):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
[4]张瑞 毛露 孙硕 Dirk Hermann 陈艾东.内皮素-1干预成为高血压治疗新靶点的展望[J].心血管病学进展,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
ZHANG Rui MAO LuSUN ShuoDIRK Hermann CHEN Aidong.The Prospect of Endothelin-1 Intervention as A New Target for the Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
[5]张毅,柳志红.动态血压监测在高血压中的应用现状与问题[J].心血管病学进展,2019,(6):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
ZHANG Yi,LIU Zhihong.Current status and nsolved Pproblems of Ambulatory Blood Pressure Monitoring for the Management of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
[6]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[7]张旭明 王曦.高血压对认知功能的影响[J].心血管病学进展,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
ZHANG Xuming,WANG Xi.The Relationship Between Hypertension and Cognitive Function[J].Advances in Cardiovascular Diseases,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
[8]凌梦军 陈明凌梦军.阻塞性睡眠呼吸暂停低通气综合征与高血压关系的研究进展[J].心血管病学进展,2019,(5):722.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.015]
[9]李波 郭毅 田进文 邓珏琳.高血压合并2型糖尿病的治疗进展[J].心血管病学进展,2019,(9):1196.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.002]
LI Bo,GUO Yi,TIAN Jinwen,et al.Therapy in Hypertensive Patients with Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(7):1196.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.002]
[10]王继航 赵施皓 李开亮 田进文 李玉龙 付士辉 沈明志 邓珏琳.远程医疗在高血压病管理中的研究进展[J].心血管病学进展,2019,(9):1199.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.003]
WANG Jihang,ZHAO Shihao,LI Kailiang,et al.Telemedicine in Hypertension Management[J].Advances in Cardiovascular Diseases,2019,(7):1199.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.003]