[1]王洪伟,王贺,卢明凯,等.线粒体氧化应激在心房颤动电重构机制中的研究进展[J].心血管病学进展,2023,(12):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
 WANG Hongwei,WANG He,LU Mingkai,et al.Research Progress of Mitochondrial Oxidative Stress in the Mechanism of?lectrical Remodeling of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(12):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
点击复制

线粒体氧化应激在心房颤动电重构机制中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年12期
页码:
1079
栏目:
综述
出版日期:
2023-12-25

文章信息/Info

Title:
Research Progress of Mitochondrial Oxidative Stress in the Mechanism of?lectrical Remodeling of Atrial Fibrillation
作者:
王洪伟12王贺3卢明凯1 陈玉善3 关怀敏4 解金红4
(1.河南中医药大学,河南 郑州 450046;2.深圳市第三人民医院 广东 深圳 518112;3.河南中医药大学第一附属医院心内科,河南 郑州 450000;4.河南中医药大学第一附属医院心脏中心,河南 郑州 450000)
Author(s):
WANG Hongwei12WANG He2LU Mingkai1CHEN Yushan2CARING Min3XIE Jinhong3
?1.Henan University of Chinese MedicineZhengzhou 450046HenanChina2.Shenzhen Third People’s Hospital,Shenzhen 518112,Guangdong,China;3.Third Ward,Department of Cardiology,Zhengzhou 450000,Henan,China;4.The First Affiliated Hospital of Henan University of Chinese Medicine,Cardiac Center,The First Affiliated Hospital of Henan University of Chinese Medicine,Zhengzhou 450000,Henan,China)
关键词:
心房颤动线粒体氧化应激电重构
Keywords:
Atrial fibrillationMitochondrionOxidative stressElectrical remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2023.12.006
摘要:
线粒体是心肌细胞的发电厂,为心肌细胞的各项活动提供能量,心肌细胞中线粒体的含量较为丰富。近年来越来越多的研究表明,心脏电重构是心律失常的电基础。线粒体发生氧化应激时,线粒体的结构和功能发生改变,引起心房肌细胞的离子通道和缝隙连接通道发生改变,从而导致心房电重构。因此,心房肌细胞线粒体氧化应激在心房电重构过程中发挥着重要作用。
Abstract:
Mitochondria are the power plant of cardiomyocytes,providing energy for the activities of cardiomyocytes. The content of mitochondria in cardiomyocytes is relatively rich. In recent years,more and more studies have shown that electrical heart remodeling is the electrical basis of arrhythmia. When oxidative stress occurs in mitochondria,the structure and function of mitochondria are changed,causing changes in ion channels and gap junction channels of atrial myocytes,thus leading to atrial electrical remodeling. Therefore,oxidative stress of atrial myocyte mitochondria plays an important role in the process of atrial electroremodeling

参考文献/References:

[1] Lippi G,Sanchis-Gomar F,Cervellin G. Global epidemiology of atrial fibrillation:an increasing epidemic and public health challenge[J]. Int J Stroke,2021,16(2):217-221.
[2] Wang Z,Chen Z,Wang X,et al. The disease burden of atrial fibrillation in China from a national cross-sectional survey[J]. Am J Cardiol,2018,122(5):793-798.
[3] Chen M,Li C,Liao P,et al. Epidemiology,management,and outcomes of atrial fibrillation among 30 million citizens in Shanghai,China from 2015 to 2020:a medical insurance database study[J]. Lancet Reg Health West Pac,2022,23:100470.
[4] Yuan M,Gong M,He J,et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol,2022,52:102289.
[5] Zhao J,Yu L,Xue X,et al. Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKⅡ/MAPK/AP-1 axis-mediated mitochondrial oxidative stress[J]. Redox Biol,2023,59:102594.
[6] Mason FE,Pronto JRD,Alhussini K,et al. Cellular and mitochondrial mechanisms of atrial fibrillation[J]. Basic Res Cardiol,2020,115(6):72.
[7] Zorov DB,Juhaszova M,Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev,2014,94(3):909-950.
[8] Bertero E,Maack C. Calcium signaling and reactive oxygen species in mitochondria[J]. Circ Res,2018,122(10):1460-1478.
[9] Liu C,Ma N,Guo Z,et al. Relevance of mitochondrial oxidative stress to arrhythmias:innovative concepts to target treatments[J]. Pharmacol Res,2022,175:106027.
[10] Yang X,An N,Zhong C,et al. Enhanced cardiomyocyte reactive oxygen species signaling promotes ibrutinib-induced atrial fibrillation[J]. Redox Biol,2020,30:101432.
[11] Sagris M,Vardas EP,Theofilis P,et al. Atrial fibrillation:pathogenesis,predisposing factors,and genetics[J]. Int J Mol Sci,2021,23(1):6.
[12] Walkon LL,Strubbe-Rivera JO,Bazil JN. Calcium overload and mitochondrial metabolism[J]. Biomolecules,2022,12(12):1891.
[13] Zhang M,Qi J,He Q,et al. Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress,apoptosis,and L-type Ca2+ channels[J]. Phytother Res,2022,36(9):3619-3631.
[14] Garbincius JF,Elrod JW. Mitochondrial calcium exchange in physiology and disease[J]. Physiol Rev,2022,102(2):893-992.
[15] Zhang T,Liu Q,Gao W,et al. The multifaceted regulation of mitophagy by endogenous metabolites[J]. Autophagy,2022,18(6):1216-1239.
[16] Gambardella J,Sorriento D,Ciccarelli M,et al. Functional role of mitochondria in arrhythmogenesis[J]. Adv Exp Med Biol,2017,982:191-202.
[17] Sch?nleitner P,Schotten U,Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart[J]. Prog Biophys Mol Biol,2017,130(Pt B):288-301.
[18] Onal B,Gratz D,Hund TJ. Ca2+/calmodulin-dependent kinase Ⅱ-dependent regulation of atrial myocyte late Na+ current,Ca2+ cycling,and excitability:a mathematical modeling study[J]. Am J Physiol Heart Circ Physiol,2017,313(6):H1227-H1239.
[19] He M,Qiu J,Wang Y,et al. Caveolin-3 and arrhythmias:insights into the molecular mechanisms[J]. J Clin Med,2022,11(6):1595.
[20] Liu M,Liu H,Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8):967-974.
[21]Yang R,Ernst P,Song J,et al. Mitochondrial-mediated oxidative Ca2+/calmodulin-dependent kinase Ⅱ activation induces early afterdepolarizations in guinea pig cardiomyocytes:an in silico study[J]. J Am Heart Assoc,2018,7(15):e008939.
[22] Zhazykbayeva S,Pabel S,Mügge A,et al. The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases[J]. Biophys Rev,2020,12(4):947-968.
[23]Picard M,Shirihai OS. Mitochondrial signal transduction[J]. Cell Metab,2022,34(11):1620-1653.
[24] Sag CM,Wagner S,Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes[J]. Free Radic Biol Med,2013,63:338-349.
[25] Yoo S,Aistrup G,Shiferaw Y,et al. Oxidative stress creates a unique,CaMKⅡ-mediated substrate for atrial fibrillation in heart failure[J]. JCI Insight,2018,3(21):e120728.
[26] Aimoto M,Yagi K,Ezawa A,et al. Chronic volume overload caused by abdominal aorto-venocaval shunt provides arrhythmogenic substrates in the rat atrium[J]. Biol Pharm Bull,2022,45(5):635-642.
[27] Kayki-Mutlu G,Koch WJ. Nitric oxide and S-nitrosylation in cardiac regulation:G protein-coupled receptor kinase-2 and β-arrestins as targets[J]. Int J Mol Sci,2021,22(2):521.
[28] McCauley MD,Hong L,Sridhar A,et al. Ion channel and structural remodeling in obesity-mediated atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2020,13(8):e008296.
[29] Svoboda LK,Reddie KG,Zhang L,et al. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5[J]. Circ Res,2012,111(7):842-853.
[30] Miura T,Liu Y,Goto M,et al. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury[J]. J Am Coll Cardiol,2001,37(3):957-963.
[31] Guo YH,Yang YQ. Atrial fibrillation:focus on myocardial connexins and gap junctions[J]. Biology (Basel),2022,11(4):489.
[32] Santos-Miranda A,Noureldin M,Bai D. Effects of temperature on transjunctional voltage-dependent gating kinetics in Cx45 and Cx40 gap junction channels[J]. J Mol Cell Cardiol,2019,127:185-193.
[33] Jassim A,Aoyama H,Ye WG,et al. Engineered Cx40 variants increased docking and function of heterotypic Cx40/Cx43 gap junction channels[J]. J Mol Cell Cardiol,2016,90:11-20.
[34] Luo B,Yan Y,Zeng Z,et al. [Corrigendum] Connexin 43 reduces susceptibility to sympathetic atrial fibrillation[J]. Int J Mol Med,2021,47(1):410.
[35] Qiu Y,Zheng J,Chen S,et al. Connexin mutations and hereditary diseases[J]. Int J Mol Sci,2022,23(8):4255.
[36] Frank M,Wirth A,Andrié RP,et al. Connexin45 provides optimal atrioventricular nodal conduction in the adult mouse heart[J]. Circ Res,2012,111(12):1528-1538.
[37] Seki A,Ishikawa T,Daumy X,et al. Progressive atrial conduction defects associated with bone malformation caused by a connexin-45 mutation[J]. J Am Coll Cardiol,2017,70(3):358-370.

相似文献/References:

[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
 HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(12):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
 DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(12):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
 ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
 ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
 CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(12):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[6]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
 HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[7]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
 WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[8]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
 XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[9]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
 ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(12):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[10]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
 WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(12):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[11]喜林强 孙华鑫 商鲁翔 汤宝鹏 周贤惠.心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展[J].心血管病学进展,2023,(10):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
 XI Linqiang,SUN Huaxin,SHANG Luxiang,et al.Atrial Energy Metabolism Remodeling and Targeted Intervention of PPAR in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(12):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]

备注/Memo

备注/Memo:
收稿日期:2023-03-16基金项目:国家自然科学基金面上项目( 81473508) ;河南省自然科学基金( 212300410370)
更新日期/Last Update: 2024-01-19