[1]李俊霖 韩虎魁 程攀科 李刚 陶剑虹.Foxp3+调节性T细胞与心肌缺血再灌注损伤概述[J].心血管病学进展,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
 LI Junlin,HAN Hukui,CHENG Panke,et al.Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
点击复制

Foxp3+调节性T细胞与心肌缺血再灌注损伤概述()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年9期
页码:
832
栏目:
综述
出版日期:
2023-09-25

文章信息/Info

Title:
Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury
作者:
李俊霖1 韩虎魁2 程攀科12 李刚12 陶剑虹12
(1.电子科技大学医学院,四川 成都 611731;2.电子科技大学附属医院 四川省医学科学院·四川省人民医院心血管内科,四川 成都 610072)
Author(s):
LI Junlin1HAN Hukui2CHENG Panke12LI Gang12TAO Jianhong12
(1. School of Medicine,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan China;2. Department of Cardiology ,The Affiliated Hospital of University of Electronic Science and Technology of China,Sichuan Academy of Medical Sciences Sichuan Provincial People’s Hospital,Chengdu 610072,Sichuan China)
关键词:
调节性T细胞心肌缺血再灌注损伤Foxp3免疫反应
Keywords:
Regulatory T cellMyocardial ischemia Reperfusion injuryFoxp3Immune response
DOI:
10.16806/j.cnki.issn.1004-3934.2023.09.015
摘要:
心肌缺血再灌注损伤与心肌梗死的面积密切相关,减少心肌缺血再灌注损伤有助于改善心肌梗死患者的预后。炎症在心肌缺血再灌注损伤中发挥重要作用。及时消除炎症渗入,将炎症反应和修复反应在空间上限制在心肌梗死区,是实现梗死区最佳愈合的关键。Foxp3+调节性T细胞参与调节各种生理和病理的免疫炎症反应。心肌梗死后,Foxp3+调节性T细胞可促进心肌组织的再生和修复,加速心肌梗死的恢复过程。现系统综述Foxp3+调节性T细胞在心肌缺血再灌注损伤中的作用,旨在深入了解Foxp3+调节性T细胞的功能,这可能有助于设计有效的方法来控制免疫反应,为心肌梗死提供新的潜在治疗方案。
Abstract:
The final area of myocardial infarction is closely related to myocardial ischemia reperfusion injury. Reducing myocardial ischemia reperfusion injury can improve the prognosis of myocardial infarction patients. Inflammation plays an important role in myocardial ischemia reperfusion injury. Timely elimination of inflammatory infiltration and spatially limiting the inflammatory and reparative reactions to the myocardial infarction area is the key to achieving optimal healing of the infarction area. Foxp3+ regulatory T cells participate in regulating various physiological and pathological immune-inflammatory reactions. After myocardial infarction ,Foxp3+ regulatory T cells can promote the regeneration and repair of myocardial tissue,accelerating the healing process of myocardial infarction. This article provides a systematic review of the role of Foxp3+ regulatory T cells in myocardial ischemia reperfusion injury,aiming to deepen our understanding of their functions. This may help design effective methods to control immune reactions and provide new potential treatment options for myocardial infarction

参考文献/References:

[1] 国家心血管病中心. 中国心血管健康与疾病报告2021[M]. 北京:科学出版社,2022.

[2] Hori S,Nomura T,Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science,2003,299(5609):1057-1061.

[3] Tang TT,Yuan J,Zhu ZF,et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction[J]. Basic Res Cardiol,2012,107(1):232.

[4] Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol,2020,17(12):773-789.

[5] Yellon DM,Hausenloy DJ. Myocardial reperfusion injury[J]. N Engl J Med,2007,357(11):1121-1135.

[6] Hausenloy DJ,Yellon DM. Myocardial ischemia-reperfusion injury:a neglected therapeutic target[J]. J Clin Invest,2013,123(1):92-100.

[7] Liu J,Wang H,Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury:a double-edged sword[J]. Clin Med Insights Cardiol,2016,10:79-84.

[8] Gershon RK,Kondo K. Cell interactions in the induction of tolerance:the role of thymic lymphocytes[J]. Immunology,1970,18(5):723-737.

[9] Fontenot JD,Gavin MA,Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol,2003,4(4):330-336.

[10] Sharabi A,Tsokos MG,Ding Y,et al. Regulatory T cells in the treatment of disease[J]. Nat Rev Drug Discov,2018,17(11):823-844.

[11] Belkaid Y. Regulatory T cells and infection:a dangerous necessity[J]. Nat Rev Immunol,2007,7(11):875-888.

[12] Zou W. Regulatory T cells,tumour immunity and immunotherapy[J]. Nat Rev Immunol,2006,6(4):295-307.

[13] Sakaguchi S,Mikami N,Wing JB,et al. Regulatory T cells and human disease[J]. Annu Rev Immunol,2020,38:541-566.

[14] Li F,Liu D,Liu M,et al. Tregs biomimetic nanoparticle to reprogram inflammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice[J]. J Nanobiotechnology,2022,20(1):251.

[15] Saxena A,Dobaczewski M,Rai V,et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function[J]. Am J Physiol Heart Circ Physiol,2014,307(8):H1233-H1242.

[16] Xia N,Jiao J,Tang TT,et al. Activated regulatory T-cells attenuate myocardial ischaemia/reperfusion injury through a CD39-dependent mechanism[J]. Clin Sci (Lond),2015,128(10):679-693.

[17] Xia N,Lu Y,Gu M,et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction[J]. Circulation,2020,142(20):1956-1973.

[18] Dobaczewski M,Xia Y,Bujak M,et al. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart,mediating recruitment of regulatory T cells[J]. Am J Pathol,2010,176(5):2177-2187.

[19] Lewkowicz N,Klink M,Mycko MP,et al. Neutrophil--CD4+CD25+ T regulatory cell interactions:a possible new mechanism of infectious tolerance[J]. Immunobiology,2013,218(4):455-464.

[20] Lewkowicz P,Lewkowicz N,Sasiak A,et al. Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death[J]. J Immunol,2006,177(10):7155-7163.

[21] Xiao J,Yu K,Li M,et al. The IL-2/anti-IL-2 complex attenuates cardiac ischaemia-reperfusion injury through expansion of regulatory T cells[J]. Cell Physiol Biochem,2017,44(5):1810-1827.

[22] Weirather J,Hofmann UD,Beyersdorf N,et al. Foxp3+ CD4 + T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J]. Circ Res,2014,115(1):55-67.

[23] Yang Z,Zingarelli B,Szabó C. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury[J]. Circulation,2000,101(9):1019-1026.

[24] Liu YF,Chu YY,Zhang XZ,et al. TGFβ1 protects myocardium from apoptosis and oxidative damage after ischemia reperfusion[J]. Eur Rev Med Pharmacol Sci,2017,21(7):1551-1558.

[25] Ralainirina N,Poli A,Michel T,et al. Control of NK cell functions by CD4+CD25+ regulatory T cells[J]. J Leukoc Biol,2007,81(1):144-153.

[26] Cao X,Cai SF,Fehniger TA,et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity,2007,27(4):635-646.

[27] Borsellino G,Kleinewietfeld M,Di Mitri D,et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells:hydrolysis of extracellular ATP and immune suppression[J]. Blood,2007,110(4):1225-1232.

[28] Gondek DC,Devries V,Nowak EC,et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells[J]. J Immunol,2008,181(7):4752-4760.

[29] Pandiyan P,Zheng L,Ishihara S,et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4 + T cells[J]. Nat Immunol,2007,8(12):1353-1362.

[30] Iikuni N,Louren?o EV,Hahn BH,et al. Cutting edge:Regulatory T cells directly suppress B cells in systemic lupus erythematosus[J]. J Immunol,2009,183(3):1518-1522.

[31] Gotot J,Dhana E,Yagita H,et al. Antigen-specific Helios-,Neuropilin-1- Tregs induce apoptosis of autoreactive B cells via PD-L1[J]. Immunol Cell Biol,2018,96(8):852-862.

[32] Gri G,Piconese S,Frossi B,et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction[J]. Immunity,2008,29(5):771-781.

相似文献/References:

[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
 ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(9):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(9):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[3]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
 HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(9):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[4]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
 GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(9):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[5]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(9):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[6]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
 GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(9):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[7]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(9):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[8]李秋 李蔚华.TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
 LI Qiu,LI Weihua.Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(9):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
[9]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(9):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[10]热伊莱·开赛尔 谢翔.琥珀酸在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]
 Reyilai·Kaisaier,XIE Xiang.Succinic Acid and Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(9):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]

更新日期/Last Update: 2023-10-17