参考文献/References:
[1] Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children[J]. 1967,16(3):178-222.
[2] Xie L,Yan W,Huang M,et al. Epidemiologic features of kawasaki disease in shanghai from 2013 through 2017[J]. 2019,30(10):429-435.
[3] Rowley AH,Shulman ST. The epidemiology and pathogenesis of kawasaki disease[J]. 2018,6:374.
[4] Burns JC,Shimizu C,Gonzalez E,et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease[J]. 2005,192(2):344-349.
[5] Cai X,Zhu Q,Wu T,et al. Association of circulating resistin and adiponectin levels with Kawasaki disease:a meta-analysis[J]. 2019,19(2):1033-1041.
[6] Johnson TA,Mashimo Y,Wu J,et al. Association of an IGHV3-66 gene variant with kawasaki disease[J]. 2020,66(5):475-489.
[7] Rahmani F,Ziaee V,Assari R,et al. Interleukin 10 and transforming growth factor beta polymorphisms as risk factors for kawasaki disease:a case-control study and meta-analysis[J]. 2019,11(4):325-333.
[8] Yuan Y,Piao J,Lu N. Tumor necrosis factor-α-308 polymorphism is not associated with Kawasaki disease:a meta-analysis of case-control studies[J]. 2019,98(26):e15963.
[9] Barandouzi ZA,Starkweather AR,Henderson WA,et al. Altered composition of gut microbiota in depression:a systematic review[J]. 2020,11:541.
[10] Marques FZ,Jama HA,Tsyganov K,et al. Guidelines for transparency on gut microbiome studies in essential and experimental hypertension[J]. 2019,74(6):1279-1293.
[11] Woodall CA,McGeoch LJ,Hay AD,et al. Respiratory tract infections and gut microbiome modifications:a systematic review[J]. 2022,17(1):e262057.
[12] Kurilshikov A,Medina-Gomez C,Bacigalupe R,et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. 2021,53(2):156-165.
[13] Grochowalski ?,Jarczak J,Urbanowicz M,et al. Y-chromosome genetic analysis of modern polish population[J]. 2020,11:567309.
[14] Jarczak J,Grochowalski ?,Marciniak B,et al. Mitochondrial DNA variability of the polish population[J]. 2019,27(8):1304-1314.
[15] Buda P,Chyb M,Smorczewska-Kiljan A,et al. Association between rs12037447,rs146732504,rs151078858,rs55723436,and rs6094136 polymorphisms and Kawasaki disease in the population of polish children[J]. 2021,9:624798.
[16] Nagata S,Yamashiro Y,Maeda M,et al. Immunohistochemical studies on small intestinal mucosa in Kawasaki disease[J]. 1993,33(1):557-563.
[17] Guarner F,Malagelada JR. Gut flora in health and disease[J]. Lancet,2003,361(9356):512-519.
[18] 赖恒. 肠道微生物介导川崎病Th细胞分化异常及血管损伤机制的初步研究[D]. 遵义医科大学2020.
[19] Abe J,Ebata R,Saito N,et al. Abstract 39:human oral,gut,and blood microbiota in patients with Kawasaki disease[Z]. 2015,131:suppl2.
[20] Yeung R,Chan D,Duong T. Abstract 52:The Gut Microbiome Alters Susceptibility to Coronary Inflammation in Kawasaki Disease[Z]. 2015,131:suppl2.
[21] Galipeau HJ,Caminero A,Turpin W,et al. Novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis[J]. 2020,160(5):1532-1545.
[22] Yan X,Chen X,Tian X,et al. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats[J]. 2021,767:144924.
[23] Leibovitzh H,Lee S,Xue M,et al. Altered gut microbiome composition and function are associated with gut barrier dysfunction in healthy relatives of patients with crohn’s disease[J]. 2022,163 (5):1364-1376.
[24] Eladawy M,Dominguez SR,Anderson MS,et al. Kawasaki disease and the pediatric gastroenterologist:a diagnostic challenge[J]. 2013,56(5):297-299.
[25] Guo MM,Tseng W,Ko C,et al. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease[J]. 2015,70(3):310-318.
[26] Geuking MB,McCoy KD,Macpherson AJ. Metabolites from intestinal microbes shape Treg[J]. 2013,23(12):1339-1340.
[27] Kaneko K,Akagawa S,Akagawa Y,et al. Our evolving understanding of Kawasaki disease pathogenesis:role of the gut microbiota[J]. 2020,11:1616.
[28] Huang F,Kuo H,Huang Y,et al. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy:implication for the treatment of Kawasaki disease[J]. 2017,18(1):3.
[29] Hozzein WN,Al-Khalaf AA,Mohany M,et al. Efficacy of two actinomycete extracts in the amelioration of carbon tetrachloride-induced oxidative stress and nephrotoxicity in experimental rats[J]. 2019,26(23):24010-24019.
[30] Chen M,Zhu X,Ran L,et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. 2017,6(9).
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(6):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]杨再英,王钰.川崎病后无创检查评估血管内皮功能的研究进展[J].心血管病学进展,2019,(6):939.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.025]
YANG Zaiying,WANG Yu.Non-invasive Assessment of Vascular Endothelial Function after Kawasaki Disease[J].Advances in Cardiovascular Diseases,2019,(6):939.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.025]
[3]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(6):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[4]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(6):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[5]石树文 田雯.肠道微生物群与儿童川崎病[J].心血管病学进展,2020,(6):608.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.012]
SHI ShuwenTIAN Wen. Intestinal microbiota and children Kawasaki disease[J].Advances in Cardiovascular Diseases,2020,(6):608.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.012]
[6]魏伟 魏灵睿 冷辉.血清miR-1和miR-26水平与川崎病患儿的关系及其对冠状动脉损伤的评估价值[J].心血管病学进展,2021,(5):476.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.021]
WEI WeiWEI LingruiLENG Hui.Relationship Between Serum miR-1 and miR-26 Levels and Kawasaki Disease in Children and Its Value in Evaluating Coronary Artery Injury[J].Advances in Cardiovascular Diseases,2021,(6):476.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.021]
[7]王琼琼,赵胜.血小板活化在川崎病中的研究进展[J].心血管病学进展,2021,(6):552.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.000]
WANG QiongqiongZHAO Sheng.Platelet Activation in the Pathogenesis of Kawasaki Disease[J].Advances in Cardiovascular Diseases,2021,(6):552.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.000]
[8]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(6):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[9].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(6):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[10]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(6):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]