参考文献/References:
[1] Akhmerov A,Parimon T. Extracellular vesicles,inflammation,and cardiovascular disease[J]. Cells,2022,11(14):2229.
[2] Sabihi M,B?ttcher M,Pelczar P,et al. Microbiota-dependent effects of IL-22[J]. Cells,2020,9(10):2205.
[3] Che Y,Su ZL,Xia L. Effects of IL-22 on cardiovascular diseases [J]. Int Immunopharmacol, 2020,81:106277.
[4] Zenewicz LA. IL-22 Binding protein (IL-22BP) in the regulation of IL-22 biology[J]. Front Immunol,2021,12:766586.
[5] Lücke J,Sabihi M,Zhang T,et al. The good and the bad about separation anxiety:roles of IL-22 and IL-22BP in liver pathologies[J]. Semin Immunopathol,2021,43(4):591-607.
[6] Keir M,Yi Y,Lu T,et al. The role of IL-22 in intestinal health and disease[J]. J Exp Med,2020,217(3):e20192195.
[7] Dudakov JA,Hanash AM,van den Brink MR. Interleukin-22:immunobiology and pathology[J]. Annu Rev Immunol,2015,33:747-785.
[8] Valeri M,Raffatellu M. Cytokines IL-17 and IL-22 in the host response to infection [J]. Pathog Dis,2016,74(9):ftw111.
[9] Lu Z,Liu R,Huang E,et al. MicroRNAs:new regulators of IL-22[J]. Cell Immunol,2016,304-305:1-8.
[10] Wolk K,Witte E,Witte K,et al. Biology of interleukin-22[J]. Semin Immunopathol,2010,32(1):17-31.
[11] Huber S,Gagliani N,Zenewicz LA,et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine[J]. Nature,2012,491(7423):259-263.
[12] Martin JC,Bériou G,Heslan M,et al. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid[J]. Mucosal Immunol,2014,7(1):101-113.
[13] Luo JW,Hu Y,Liu J,Yang H,et al. Interleukin-22:a potential therapeutic target in atherosclerosis[J]. Mol Med,2021,27(1):88.
[14] van Hoeven V,Munneke JM,Cornelissen AS,et al. Mesenchymal stromal cells stimulate the proliferation and IL-22 production of group 3 innate lymphoid cells[J]. J Immunol,2018,201(4):1165-1173.
[15] Chen Q,Lv J,Yang W,et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis[J]. Theranostics,2019,9(22):6424-6442.
[16] Yang FC,Chiu PY,Chen Y,et al. TREM-1-dependent M1 macrophage polarization restores intestinal epithelium damaged by DSS-induced colitis by activating IL-22-producing innate lymphoid cells[J]. J Biomed Sci,2019,26(1):46.
[17] Ye J,Wang Y,Xu Y,et al. Interleukin-22 deficiency alleviates doxorubicin-induced oxidative stress and cardiac injury via the p38 MAPK/macrophage/Fizz3 axis in mice[J]. Redox Biol,2020,36:101636.
[18] Gan ZS,Wang QQ,Li JH,et al. Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1[J].?Mediators Inflamm,2017,2017:8570818.
[19] Hu H,Li L,Yu T,et al. Interleukin-22 receptor 1 upregulation and activation in hypoxic endothelial cells improves perfusion recovery in experimental peripheral arterial disease[J]. Biochem Biophys Res Commun,2018,505(1):60-66.
[20] Rattik S,Hultman K,Rauch U,et al. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice[J]. Atherosclerosis,2015,242(2):506-514.
[21] Clarke MC,Figg N,Maguire JJ,et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis[J]. Nat Med,2006,12(9):1075-1080.
[22] Chang Y,Al-Alwan L,Risse PA,et al. TH17 cytokines induce human airway smooth muscle cell migration[J]. J Allergy Clin Immunol,2011,127(4):1046-1053.e2.
[23] Gong F,Wu J,Zhou P,et al. Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease[J]. Mediators Inflamm,2016,2016:8254797.
[24] Shi L,Ji QW,Liu L,et al. IL‐22 produced by Th22 cells aggravates atherosclerosis development in ApoE?/? mice by enhancing DC‐induced Th17 cell proliferation[J]. J Cell Mol Med ,2020,24(5):3064-3078.
[25] Libby P,Aikawa M. Stabilization of atherosclerotic plaques:new mechanisms and clinical targets[J]. Nat Med,2002,8(11):1257-1262.
[26] Fatkhullina AR,Peshkova IO,Dzutsev A,et al. An Interleukin-23-Interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis[J]. Immunity,2018,49(5):943-957.e9.
[27] Kahles F,Findeisen HM,Bruemmer D. Osteopontin:A novel regulator at the cross roads of inflammation,obesity and diabetes[J]. Mol Metab,2014,3(4):384-393.
[28] Zhang L,Wang T,Wang XQ,et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome[J]. PLoS One,2013,8(12):e71466.
[29] Takahashi J,Yamamoto M,Yasukawa H,et al. Interleukin-22 directly activates myocardial STAT3 (signal transducer and activator of transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury[J]. J Am Heart Assoc,2020,9(8):e014814.
[30] Niu G,Wright KL,Ma Y,et al. Role of Stat3 in regulating p53 expression and function[J]. Mol Cell Biol,2005,25(17):7432-7440.
[31] Naito AT,Okada S,Minamino T,et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury[J]. Circ Res,2010,106(11):1692-1702.
[32] Ye J,Ji QW,Liu JF,et al. Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin Ⅱ-treated mice[J]. J Am Heart Assoc,2017,6(10):e005875.
[33] Akbari H,Asadikaram G,Jafari A,et al. Atorvastatin,losartan and captopril may upregulate IL-22 in hypertension and coronary artery disease; the role of gene polymorphism[J]. Life Sci,2018,207:525-531.
[34] Sagar S,Liu PP,Cooper LT Jr. Myocarditis[J]. Lancet,2012,379(9817):738-747.
[35] Kong Q,Wu W,Yang F,et al. Increased expressions of IL-22 and Th22 cells in the coxsackievirus B3-Induced mice acute viral myocarditis[J]. Virol J,2012,9:232.
[36] Kong Q,Xue Y,Wu W,et al. IL-22 exacerbates the severity of CVB3-induced acute viral myocarditis in IL-17A-deficient mice[J]. Mol Med Rep,2013,7(4):1329-1335.
[37] Sonnenberg GF,Nair MG,Kirn TJ,et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A[J]. J Exp Med,2010,207(6):1293-1305.
[38] Guo Y,Wu W,Cen Z,et al. IL-22-producing Th22 cells play a protective role in CVB3-induced chronic myocarditis and dilated cardiomyopathy by inhibiting myocardial fibrosis[J]. Virol J,2014,11:230.
[39] Veselka J,Anavekar NS,Charron P. Hypertrophic obstructive cardiomyopathy[J]. Lancet,2017,389(10075):1253-1267.
[40] Ye J,Liu L,Ji Q,et al. Anti-interleukin-22-neutralizing antibody attenuates angiotensin Ⅱ-induced cardiac hypertrophy in mice[J]. Mediators Inflamm,2017,2017:5635929.
[41] Gu J,Zhou P,Liu Y,et al. Down-regulating Interleukin-22/Interleukin-22 binding protein axis promotes inflammation and aggravates diet-induced metabolic disorders[J]. Mol Cell Endocrinol,2022,557:111776.
相似文献/References:
[1]孙刚,黄冠华,综述.高血压合并心力衰竭的治疗策略[J].心血管病学进展,2016,(2):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
SUN Gang,HUANG Guanhua.Treatment Strategy of Hypertension with Heart Failure[J].Advances in Cardiovascular Diseases,2016,(7):201.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.027]
[2]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[3]范贵娟,综述,徐瑞,等.盐敏感性高血压的研究进展[J].心血管病学进展,2016,(4):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
FAN Guijuan,XU Rui.Research Progress of Salt Sensitive Hypertension[J].Advances in Cardiovascular Diseases,2016,(7):364.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.010]
[4]陈源源.钙通道阻滞剂在降压治疗中的应用[J].心血管病学进展,2015,(6):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
CHEN Yuanyuan.Application of Calcium Channel Blockers in Hypertension Treatment[J].Advances in Cardiovascular Diseases,2015,(7):662.[doi:10.3969/j.issn.1004-3934.2015.06.002]
[5]张瑞 毛露 孙硕 Dirk Hermann 陈艾东.内皮素-1干预成为高血压治疗新靶点的展望[J].心血管病学进展,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
ZHANG Rui MAO LuSUN ShuoDIRK Hermann CHEN Aidong.The Prospect of Endothelin-1 Intervention as A New Target for the Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):969.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.000]
[6]张毅,柳志红.动态血压监测在高血压中的应用现状与问题[J].心血管病学进展,2019,(6):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
ZHANG Yi,LIU Zhihong.Current status and nsolved Pproblems of Ambulatory Blood Pressure Monitoring for the Management of Hypertension[J].Advances in Cardiovascular Diseases,2019,(7):848.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.003]
[7]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[8]张旭明 王曦.高血压对认知功能的影响[J].心血管病学进展,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
ZHANG Xuming,WANG Xi.The Relationship Between Hypertension and Cognitive Function[J].Advances in Cardiovascular Diseases,2019,(7):977.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.003]
[9]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[10]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[11]杨晓倩 秦莉 张艺文 童兰 汪汉.糖皮质激素与心血管疾病[J].心血管病学进展,2020,(4):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
YANG Xiaoqian,QIN Li,ZHANG Yiwen,et al.Glucocorticoid and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(7):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
[12]邹昕宇 杨帆 吴建军 邢磊.端粒长度在心脑血管疾病的研究进展[J].心血管病学进展,2022,(12):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]
ZOU Xinyu,YANG Fan,WU Jianjun,et al.Telomere Length in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(7):1131.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.017]
[13]刘张弛 杨波.瞬时受体电位香草酸亚型4在心血管疾病中的研究进展[J].心血管病学进展,2023,(9):777.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.000]
LIU Zhangchi,YANG Bo?/html>.Transient Receptor Potential Vanilloid 4 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(7):777.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.000]