[1]葛妍敏 牛梦瑶 王佳欣 胡晓惠 武军铎.纳米材料在心肌梗死治疗中的进展[J].心血管病学进展,2023,(11):1037.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.018]
 GE YanminNIU MengyaoWANG JiaxinHU XiaohuiWU Junduo.Nanomaterials in the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(11):1037.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.018]
点击复制

纳米材料在心肌梗死治疗中的进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1037
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Nanomaterials in the Treatment of Myocardial Infarction
作者:
葛妍敏1 牛梦瑶 1 王佳欣 2 胡晓惠 1 武军铎 1
(1.吉林大学第二医院心内科,吉林 长春130000;2.重庆医科大学第二附属医院心内科,重庆 400000)
Author(s):
GE Yanmin1NIU Mengyao1WANG Jiaxin2HU Xiaohui1WU Junduo1
(1.Department of Cardiology,Second Hospital of Jilin University,Changchun 130000,Jilin,China; 2.Department of Cardiology,The Second Affiliated Hospital of Chongqing Medical University,Chongqiang 400000,China)
关键词:
心肌梗死纳米材料治疗
Keywords:
Myocardial infarction Nanomaterials Treatment
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.018
摘要:
急性心肌梗死是冠心病的严重类型,为致死致残的主要原因。近年来,纳米材料作为一种新兴的治疗手段,在临床疾病的诊治中展现出巨大潜力。现从活性氧清除、炎症反应、心肌细胞凋亡、心肌纤维化、心脏血管再新生、抗心肌梗死相关心律失常等方面阐述纳米材料在治疗心肌梗死中的进展,旨在为治疗心肌梗死提供新的思路。
Abstract:
Acute myocardial infarction is a serious type of coronary heart disease,which is the main cause of death and disability. In recent years,nanomaterials,as a new therapeutic method,have shown great potential in the diagnosis and treatment of clinical diseases. This article describes the progress of nanomaterials in the treatment of myocardial infarction from the aspects of reactive oxygen species scavenging,inflammatory reaction,myocardial cell apoptosis,myocardial fibrosis,cardiac vascular regeneration,and anti-myocardial infarction related arrhythmia,aiming to provide new ideas for the treatment of myocardial infarction

参考文献/References:

[1].中华医学会心血管病学分会,中华心血管病杂志编辑委员会.急性ST段抬高型心肌梗死诊断和治疗指南[J]. 中华心血管病杂志,2019,47(10) :766-783.
[2].韩雅玲、张运、曹丰等.ST段抬高型心肌梗死患者急诊PCI微循环保护策略中国专家共识[J]. 中华心血管病杂志,2022,50(3):221-230.
[3].Suarez S ,Almutairi A ,Christman KL. Micro- and nanoparticles for treating cardiovascular disease[J]. Biomater Sci,2015,3(4):564-580.
[4].Hosoyama K,Ahumada M,Mctiernan CD,et al. Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair[J]. ACS Appl Mater Interfaces,2018,10(51):44668-44677.
[5].Chen F,Zhao ER,Hableel G,et al. Increasing the efficacy of stem cell therapy via triple-function inorganic nanoparticles[J]. ACS Nano,2019,13(6):6605-6617.
[6].Guo J,Yang Z,Lu Y,et al. An antioxidant system through conjugating superoxide dismutase onto metal-organic framework for cardiac repair[J]. Bioact Mater,2022,10:56-67.
[7].Ai W,Bae S,Ke Q,et al. Bilirubin nanoparticles protect against cardiac ischemia/reperfusion injury in mice[J]. J Am Heart Assoc,2021,10(20):e021212.
[8].Kargozar S,Baino F,Hamzehlou S,et al. Nanotechnology for angiogenesis: opportunities and challenges[J]. Chem Soc Rev,2020,49(14):5008-5057.
[9].Sepantafar M,Maheronnaghsh R,Mohammadi H,et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair[J]. Biotechnol Adv,2016,34(4):362-379.
[10].Zhao T,Wu W,Sui L,et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries[J]. Bioact Mater,2022,7:47-72.
[11].Hu X,Zhao P,Lu Y,et al. ROS-based nanoparticles for atherosclerosis treatment[J]. Materials (Basel),2021,14(22):6921.
[12].Altshuler PJ,Schiazza AR,Luo L,et al. Superoxide dismutase-loaded nanoparticles attenuate myocardial ischemia-reperfusion injury and protect against chronic adverse ventricular remodeling[J]. Adv Ther (Weinh),2021,4(6):2100036.
[13].Liu CJ,Yao L,Hu YM,et al. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism[J]. Int J Nanomedicine,2021,16:741-752.
[14].Bae S,Park M,Kang C,et al. Hydrogen peroxide-responsive nanoparticle reduces myocardial ischemia/reperfusion injury[J]. J Am Heart Assoc,2016,5(11):e003697.
[15].Richart AL,Reddy M,Khalaji M,et al. Apo AI nanoparticles delivered post myocardial infarction moderate inflammation[J]. Circ Res,2020,127(11):1422-1436.
[16].Chen J,Yang J,Liu R,et al. Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages[J]. Theranostics,2017,7(17):4149-4167.
[17].Zhou J,Liu W,Zhao X,et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization[J]. Adv Sci (Weinh),2021,8(20):e2100505.
[18].Kwon SP,Hwang BH,Park EH,et al. Nanoparticle-mediated blocking of excessive inflammation for prevention of heart failure following myocardial infarction[J]. Small,2021,17(32):e2101207.
[19].Maranhao RC,Guido MC,de Lima AD,et al. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats[J]. Int J Nanomedicine,2017,12:3767-3784.
[20].Li Y,Yu H,Zhao L,et al. Effects of carbon nanotube-mediated Caspase3 gene silencing on cardiomyocyte apoptosis and cardiac function during early acute myocardial infarction[J]. Nanoscale,2020,12(42):21599-21604.
[21].Sayed N,Tambe P,Kumar P,et al. MiRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis[J]. Nanomedicine (Lond),2020,15(2):163-181.
[22].Zhao S,Xu Z,Wang H,et al. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction[J]. Nat Commun,2016,7:13306.
[23].Tang J,Cui X,Caranasos TG,et al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction[J]. ACS Nano,2017,11(10):9738-9749.
[24].Awada HK,Long DW,Wang Z,et al. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction[J]. Biomaterials,2017,125:65-80.
[25].Lopez B,Ravassa S,Moreno MU,et al. Diffuse myocardial fibrosis: mechanisms,diagnosis and therapeutic approaches[J]. Nat Rev Cardiol,2021,18(7):479-498.
[26].Long Q,Liu Z,Shao Q,et al. Autologous skin fibroblast-based PLGA nanoparticles for treating multiorgan fibrosis[J]. Adv Sci (Weinh),2022,9(21):e2200856.
[27].Ramirez-Carracedo R,Sanmartin M,Ten A,et al. Theranostic contribution of extracellular matrix metalloprotease inducer-paramagnetic nanoparticles against acute myocardialinfarction in a pig model of coronary ischemia-reperfusion[J]. Circ Cardiovasc Imaging,2022,15(6):e013379.
[28].Wen Z,Zhan J,Li H,et al. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction[J]. Theranostics,2021,11(8):3725-3741.
[29].Lee JR,Park BW,Kim J,et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair[J]. Sci Adv,2020,6(18):eaaz0952.
[30].Wu X,Reboll MR,Korf-Klingebiel M,et al. Angiogenesis after acute myocardial infarction[J]. Cardiovasc Res,2021,117(5):1257-1273.
[31].Rufaihah AJ,Yasa IC,Ramanujam VS,et al. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction[J]. Acta Biomater,2017,58:102-112.
[32].Li Y,Chen X,Jin R,et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs[J]. Sci Adv,2021,7(9):eabd6740.
[33].Guo W,Feng W,Huang J,et al. Supramolecular self-assembled nanofibers efficiently activate the precursor of hepatocyte growth factor for angiogenesis in myocardial infarction therapy[J]. ACS Appl Mater Interfaces,2021,13(19):22131-22141.
[34].Sun R,Wang X,Nie Y,et al. Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging[J]. Acta Biomater,2022,146:421-433.
[35].Lagonegro P,Rossi S,Salvarani N,et al.Synthetic recovery of impulse propagation inmyocardial infarction via silicon carbide semiconductive nanowires[J]. Nat Commun,2022,13(1):6.
[36].Zhou J,Yang X,Liu W,et al. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct[J]. Theranostics,2018,8(12):3317-3330.
[37].Zhao G,Feng Y,Xue L,et al. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity[J]. Acta Biomater,2022,139:190-203.
[38].Wang C,Chai Y,Wen X,et al. Stretchable and anisotropic conductive composite hydrogel as therapeutic cardiac patches[J]. ACS Materials Letters,2021,3(8):1238-1248.
[39].Yu C,Yue Z,Shi M,et al. An intrapericardial injectable hydrogel patch for mechanical-electrical coupling with infarcted myocardium[J]. ACS Nano,2022,16(10):16234-14248.
[40].Pan Q,Xu J,Wen CJ,et al. Nanoparticles: promising tools for the treatment and prevention of myocardial infarction[J]. Int J Nanomedicine,2021,16:6719-6747.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(11):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(11):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(11):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(11):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(11):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(11):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2023-12-13