[1]王治文 姜楠 胡波.新型超声声学疗法治疗心血管血栓性疾病的研究进展[J].心血管病学进展,2023,(9):800.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.008]
 WANG ZhiwenJIANG Nan,HU Bo.Innovative Ultrasound Guided Acoustic Therapy for Cardiovascular Thrombotic Disease[J].Advances in Cardiovascular Diseases,2023,(9):800.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.008]
点击复制

新型超声声学疗法治疗心血管血栓性疾病的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年9期
页码:
800
栏目:
综述
出版日期:
2023-09-25

文章信息/Info

Title:
Innovative Ultrasound Guided Acoustic Therapy for Cardiovascular Thrombotic Disease
作者:
王治文 姜楠 胡波
(武汉大学人民医院超声影像科,湖北 武汉 430060)
Author(s):
WANG ZhiwenJIANG Nan HU Bo
(Department of UltrasoundRenmin Hospital of Wuhan UniversityWuhan 430060HubeiChina)
关键词:
超声声学疗法超声响应性纳米载体心血管血栓性疾病溶栓治疗
Keywords:
UltrasoundAcoustic therapyUltrasound responsive nano carrierCardiovascular thrombotic diseaseThrombolytic therapy
DOI:
10.16806/j.cnki.issn.1004-3934.2023.09.008
摘要:
心血管血栓事件一直是困扰临床和影响患者预后的重要因素。超声声学疗法作为创新性的溶栓治疗方法,以其效、无创、安全简便的优势,展现出较好的临床转化应用潜力,逐渐成为心血管血栓性疾病治疗研究的热点。如何制备具有血栓靶向性效溶栓作用的超声响应性纳米载体,并优化设置相应的声学治疗模式,以显著提超声声学疗法的溶栓治疗效果是当下研究的技术难点。基于此,综述新超声声学疗法治疗心血管血栓性疾病的研究进展,针对如何解决超声溶栓治疗临床转化等关键问题,探讨其技术方法、治疗作用机制影响因素等对于心血管血栓性疾病溶栓效率临床转化潜力的影响。?
Abstract:
Cardiovascular thrombotic events have always been an important factor puzzling clinic and affecting the prognosis of patients. Ultrasound guided acoustic therapy,as an innovative thrombolytic treatment method with its advantages of high efficiency,non-invasive,safety and convenience,has shown good potential for clinical use and has gradually become a research hot spot for the treatment of cardiovascular thrombotic diseases. It is the technical difficulty of current research that how we can prepare ultrasound responsive nano carriers with thrombus-targeting and high thrombolytic efficiency,and optimize the corresponding acoustic treatment mode to significantly improve the thrombolytic effect of ultrasound guided acoustic therapy. In view of the present status,this article reviews the research progress of innovative ultrasound guided acoustic therapy in the treatment of cardiovascular thrombotic diseases,and discusses the impact of its technical methods,therapeutic mechanism and influence factors on the thrombolytic efficiency and clinical use potential for cardiovascular thrombotic diseases,especially focusing on the solutions and keys

参考文献/References:

[1] Zhang NLi C,Zhou D,et al. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis[J]. Acta Biomater,2018,70:227-236.
[2] Ma L,Wang Y,Zhang S,et al. Deep penetration of targeted nanobubbles enhanced cavitation effect on thrombolytic capacity[J]. Bioconjug Chem,2020,31(2):369-374.
[3] Tachibana K,Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis[J]. Circulation,1995,92(5):1148-1150.
[4] Dixon AJ,Rickel JMR,Shin BD,et al. In vitro sonothrombolysis enhancement by transiently stable microbubbles produced by a flow-focusing microfluidic device[J]. Ann Biomed Eng,2018,46(2):222-232.
[5] Dalecki D. Mechanical bioeffects of ultrasound[J]. Annu Rev Biomed Eng,2004,6:229-248.
[6] Suo D,Govind B,Zhang S,et al. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound[J]. Ultrason Sonochem,2018,41:419-426.
[7] Petit B,Bohren Y,Gaud E,et al. Sonothrombolysis:the contribution of stable and inertial cavitation to clot lysis[J]. Ultrasound Med Biol,2015,41(5):1402-1410.
[8] Hu B,Jiang N,Zhou Q,et al. Stable cavitation using acoustic phase-change dodecafluoropentane nanoparticles for coronary micro-circulation thrombolysis[J]. Int J Cardiol,2018,272:1-6.
[9] Weiss HL,Selvaraj P,Okita K,et al. Mechanical clot damage from cavitation during sonothrombolysis[J]. J Acoust Soc Am,2013,133(5):3159-3175.
[10] Hinds MT,Ammi AY,Johnson J,et al. Quantification of microbubble-induced sonothrombolysis in an ex vivo non-human primate model[J]. J Thromb Haemost,2021,19(2):502-512.
[11] Chernysh IN,Everbach CE,Purohit PK,et al. Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots[J]. J thromb haemost,2015,13(4):601-609.
[12] Dixon AJ,Li J,Rickel JR,et al. Efficacy of sonothrombolysis using microbubbles produced by a catheter-based microfluidic device in a rat model of ischemic stroke[J]. Ann Biomed Eng,2019,47(4):1012-1022.
[13] Guan L,Wang C,Yan X,et al. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model[J]. Sci Rep,2020,10(1):12511.
[14] Qian J,Wang L,Li Q,et al. Ultrasound-targeted microbubble enhances migration and therapeutic efficacy of marrow mesenchymal stem cell on rat middle cerebral artery occlusion stroke model[J]. J Cell Biochem,2019,120(3):3315-3322.
[15] Ammi AY,Lindner JR,Zhao Y,et al. Efficacy and spatial distribution of ultrasound-mediated clot lysis in the absence of thrombolytics[J]. Thromb Haemost,2015,113(6):1357-1369.
[16] Leeman JE,Kim JS,Yu FT,et al. Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis[J]. Ultrasound Med Biol,2012,38(9):1589-1598.
[17] Porter TR,Xie F,Lof J,et al. The Thrombolytic effect of diagnostic ultrasound-induced microbubble cavitation in acute carotid thromboembolism[J]. Invest Radiol,2017,52(8):477-481.
[18] Mathias W Jr,Tsutsui JM,Tavares BG,et al. Diagnostic ultrasound impulses improve microvascular flow in patients with STEMI receiving intravenous microbubbles[J]. J Am Coll Cardiol,2016,67(21):2506-2515.
[19] Acconcia C,Leung BY,Manjunath A,et al. The effect of short duration ultrasound pulses on the interaction between individual microbubbles and fibrin clots[J]. Ultrasound Med Biol,2015,41(10):2774-2782.
[20] Daffertshofer M,Fatar M. Therapeutic ultrasound in ischemic stroke treatment:experimental evidence[J]. Eur J Ultrasound,2002,16(1-2):121-130.
[21] Hynynen K,Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull[J]. Ultrasound Med Biol,1998,24(2):275-283.
[22] Janjic J,Larsson MK,Bj?llmark A. In-vitro sonothrombolysis using thick-shelled polymer microbubbles—A comparison with thin-shelled microbubbles[J]. Cardiovasc Ultrasound,2020,18(1):12.
[23] Kim J,DeRuiter RM,Goel L,et al. A comparison of sonothrombolysis in aged clots between low-boiling-point phase-change nanodroplets and microbubbles of the same composition[J]. Ultrasound Med Biol,2020,46(11):3059-3068.
[24] Zhu Q,Dong G,Wang Z,et al. Intra-clot microbubble-enhanced ultrasound accelerates catheter-directed thrombolysis for deep vein thrombosis:a clinical study[J]. Ultrasound Med Biol,2019,45(9):2427-2433.
[25] Zhong Y,Zhang Y,Xu J,et al. Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage:a synergistic nonpharmaceutical strategy[J]. Acs Nano,2019,13(3):3387-3403.
[26] de Saint Victor M,Barnsley LC,Carugo D,et al. Sonothrombolysis with magnetically targeted microbubbles[J]. Ultrasound Med Biol,2019,45(5):1151-1163.
[27] Acconcia C,Leung BY,Manjunath A,et al. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots[J]. Ultrasound Med Biol,2014,40(9):2134-2150.
[28] Xie F,Everbach EC,Gao S,et al. Effects of attenuation and thrombus age on the success of ultrasound and microbubble-mediated thrombus dissolution[J]. Ultrasound Med Biol,2011,37(2):280-288.
[29] Zhong J,Sun Y,Han Y,et al. Hydrogen sulfide-loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemia-reperfusion injury in a rat hindlimb model[J]. J Thromb Haemost,2021,19(3):738-752.
[30] Wang F,Shi T,Su C. Ultrasound with microbubble contrast agent and urokinase for thrombosis[J]. Ultrasound Med Biol,2019,45(3):859-866.
[31] Wang S,Guo X,Xiu W,et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles[J]. Sci Adv,2020,6(31):eaaz8204.
[32] Bai S,Liao J,Zhang B,et al. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi[J]. Biomater Sci,2020,8(18):5047-5060.
[33] Jiang N,Hu B,Cao S,et al. Stable low-dose oxygen release using H2O2/perfluoropentane phase-change nanoparticles with low-intensity focused ultrasound for coronary thrombolysis[J]. Ultrasound Med Biol,2020,46(10):2765-2774.
[34] Aguiar MOD,Tavares BG,Tsutsui JM,et al. Sonothrombolysis improves myocardial dynamics and microvascular obstruction preventing left ventricular remodeling in patients with ST elevation myocardial infarction[J]. Circ Cardiovasc Imaging,2020,13(4):e009536.
[35] Mathias W Jr,Tsutsui JM,Tavares BG,et al. Sonothrombolysis in ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention[J]. J Am Coll Cardiol,2019,73(22):2832-2842.
[36] McDannold N,Vykhodtseva N,Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound:association with cavitation a ctivity[J]. Phys Med Biol,2006,51(4):793-807.
[37] Lu Y,Wang J,Huang R,et al. Microbubble-mediated sonothrombolysis improves outcome after thrombotic microembolism-induced acute ischemic stroke[J]. Stroke,2016,47(5):1344-1353.
[38] Dwedar AZ,Ashour S,Haroun M,et al. Sonothrombolysis in acute middle cerebral artery stroke[J]. Neurol India,2014,62(1):62-65.
[39] Molina CA,Barreto AD,Tsivgoulis G,et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial[J]. Ann Neurol,2009,66(1):28-38.

相似文献/References:

[1]金亮丽 王治.现代医学影像学在心肾综合征中的应用进展[J].心血管病学进展,2021,(7):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
 JIN Liangli,WANG Zhi.Application Progress of Modern Medical Imaging Technology in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2021,(9):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
[2]李静 沈骁 孙加奎 孙芳 薛寅莹 章文豪 章淬.急性Stanford A型主动脉夹层术后膈肌功能障碍的临床研究[J].心血管病学进展,2022,(7):657.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 LI Jing,SHEN Xiao,SUN Jiakui,et al.Clinical Study of Diaphragmatic Dysfunction After Surgical Treatment of Acute Stanford Type A Aortic Dissection[J].Advances in Cardiovascular Diseases,2022,(9):657.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[3]亢园园 罗淞元 许建忠 罗建方 卢成志.当前不同去肾神经术的特点和存在的问题[J].心血管病学进展,2024,(10):875.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.003]
 KANG yuanyuan,LUO Songyuan,XU Jianzhong,et al.The Mechanisms and Future Challenges of Different Renal Denervation Therapy[J].Advances in Cardiovascular Diseases,2024,(9):875.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.003]

更新日期/Last Update: 2023-10-17