[1]曾庆跃 徐娇 施奕 牟钘雨 李双庆.心脏发育关键转录因子与心肌细胞直接重编程的研究进展[J].心血管病学进展,2023,(10):934.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.016]
 ZENG QingyueXU JiaoSHI YiMOU XingyuLI Shuangqing.Transcription Factors for Cardiac Development and Direct Cardiac Reprogramming[J].Advances in Cardiovascular Diseases,2023,(10):934.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.016]
点击复制

心脏发育关键转录因子与心肌细胞直接重编程的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年10期
页码:
934
栏目:
综述
出版日期:
2023-10-25

文章信息/Info

Title:
Transcription Factors for Cardiac Development and Direct Cardiac Reprogramming
作者:
曾庆跃 徐娇 施奕 牟钘雨 李双庆
(四川大学华西医学院全科医学科,四川 成都 610041)
Author(s):
ZENG QingyueXU JiaoSHI YiMOU XingyuLI Shuangqing
(Department of General Practice,West China Hospital of Sichuan University,Chengdu 610041,Sichuan,China)
关键词:
心肌细胞直接重编程转录因子心脏发育心脏再生
Keywords:
Direct cardiac reprogramming Transcription factors Cardiac development Cardiac regeneration
DOI:
10.16806/j.cnki.issn.1004-3934.2023.10.016
摘要:
由于心肌细胞几乎没有再生能力,所以在心肌细胞受损后,只能通过活化的成纤维细胞形成瘢痕组织去修补心脏。但这种修复无法恢复心脏功能。目前在心肌细胞再生研究方面有了长足的进步,从一种体细胞类型(如成纤维细胞)直接转换为心肌细胞的方法即心肌细胞直接重编程,就是一种新的可以治疗及再生受损心肌细胞的方案。在心肌细胞直接重编程中,许多心脏发育关键转录因子是各种编程方案的基石。因此现主要介绍心脏发育关键转录因子与心肌细胞直接重编程。
Abstract:
After cardiomyocytes damaged,cardiomyocytes have little regenerative capacity,The heart can only be repaired by activated fibroblasts to form scar tissue,but this repair cannot restore cardiac function. There have been great advances in myocardial regeneration research,and the direct conversion from a somatic cell type (e.g.,fibroblasts) to cardiomyocytes is known as cardiomyocyte Direct Cardiac Reprogramming,a new protocol that can treat and regenerate damaged cardiomyocytes. many transcription factors critical for cardiac development are the cornerstones of various Direct Cardiac Reprogramming schemes. Therefore,this review mainly introduces the key transcription factors in the process of cardiac development and the current combination of Direct Cardiac Reprogramming

参考文献/References:

[1] Lin X,Swedlund B,Ton MN,et al. Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors[J]. Nat Cell Biol,2022,24(7):1114-1128.

[2] Shewale B,Dubois N. Of form and function:Early cardiac morphogenesis across classical and emerging model systems[J]. Semin Cell Dev Biol,2021,118:107-118.

[3] Zhou X,Li Z,Wang Z,et al. Syncytium calcium signaling and macrophage function in the heart[J]. Cell Biosci,2018,8:24.

[4] Materna SC,Sinha T,Barnes RM,et al. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage[J]. Dev Biol,2019,445(2):170-177.

[5] Santos-Ledo A,Washer S,Dhanaseelan T,et al. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression[J]. PLoS Genet,2020,16(5):e1008782.

[6] V?lim?ki MJ,Leigh RS,Kinnunen SM,et al. GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line[J]. Stem Cell Res Ther,2021,12(1):190.

[7] Balsalobre A,Drouin J. Pioneer factors as master regulators of the epigenome and cell fate[J]. Nat Rev Mol Cell Biol,2022,23(7):449-464.

[8] Gao R,Liang X,Cheedipudi S,et al. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate[J]. Cell Res,2019,29(6):486-501.

[9] Jia G,Preussner J,Chen X,et al. Single cell rna-seq and atac-seq analysis of cardiac progenitor cell transition states and lineage settlement[J]. Nat Commun,2018,9(1):4877.

[10] Steimle JD,Moskowitz IP. TBX5:a key regulator of heart development[J]. Curr Top Dev Biol,2017,122:195-221.

[11] Takeuchi JK,Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors[J]. Nature,2009,459(7247):708-711.

[12] Drakhlis L,Biswanath S,Farr CM,et al. Human heart-forming organoids recapitulate early heart and foregut development[J]. Nat Biotechnol,2021,39(6):737-746.

[13] Swedlund B,Lescroart F. Cardiopharyngeal progenitor specification:multiple roads to the heart and head muscles[J]. Cold Spring Harb Perspect Biol,2020,12(8):a036731.

[14] Ajima R,Sakakibara Y,Sakurai-Yamatani N,et al. Formal proof of the requirement of MESP1 and MESP2 in mesoderm specification and their transcriptional control via specific enhancers in mice[J]. Development,2021,148(20):dev194613.

[15] Wang H,Yang Y,Liu J,et al. Direct cell reprogramming:approaches,mechanisms and progress[J]. Nat Rev Mol Cell Biol,2021,22(6):410-424.

[16] Garry GA,Bassel-Duby R,Olson EN. Direct reprogramming as a route to cardiac repair[J]. Semin Cell Dev Biol,2022,122:3-13.

[17] Xie Y,Liu J,Qian L. Direct cardiac reprogramming comes of age:Recent advance and remaining challenges[J]. Semin Cell Dev Biol,2022,122:37-43.

[18] Isomi M,Sadahiro T,Yamakawa H,et al. Overexpression of gata4,mef2c,and tbx5 generates induced cardiomyocytes via direct reprogramming and rare fusion in the heart[J]. Circulation,2021,143(21):2123-2125.

[19] Tang Y,Aryal S,Geng X,et al. Tbx20 improves contractility and mitochondrial function during direct human cardiac reprogramming[J]. Circulation,2022,146(20):1518-1536.

[20] Wang L,Liu Z,Yin C,et al. Stoichiometry of Gata4,Mef2c,and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming[J]. Circ Res,2015,116(2):237-244.

[21] Stone NR,Gifford CA,Thomas R,et al. Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming[J]. Cell Stem Cell,2019,25(1):87-102.e9.

[22] Paoletti C,Divieto C,Tarricone G,et al. Microrna-mediated direct reprogramming of human adult fibroblasts toward cardiac phenotype[J]. Front Bioeng Biotechnol,2020,8:529.

[23] Zhong Z,Hou J,Zhang Q,et al. Circulating microRNA expression profiling and bioinformatics analysis of dysregulated microRNAs of patients with coronary artery disease[J]. Medicine (Baltimore),2018,97(27):e11428.

[24] Baksh SS,Hodgkinson CP. Conservation of miR combo based direct cardiac reprogramming[J]. Biochem Biophys Rep,2022,31:101310.

[25] Garbutt TA,Zhou Y,Keepers B,et al. An optimized protocol for human direct cardiac reprogramming[J]. STAR Protoc,2020,1(1):100010.

[26] Jiang L,Liang J,Huang W,et al. Strategies and challenges to improve cellular programming-based approaches for heart regeneration therapy[J]. Int J Mol Sci,2020,21(20):7662.

[27] Wang H,Cao N,Spencer CI,et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor,Oct4[J]. Cell Rep,2014,6(5):951-960.

[28] Werner JH,Rosenberg Jh,UM JY,et al. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration[J]. Transl Res,2019,203:73-87.

[29] Yamakawa H,Ieda M. Cardiac regeneration by direct reprogramming in this decade and beyond[J]. Inflamm Regen,2021,41(1):20.

[30] Abad M,Hashimoto H,Zhou H,et al. Notch inhibition enhances cardiac reprogramming by increasing mef2c transcriptional activity[J]. Stem Cell Reports,2017,8(3):548-560.

[31] Bektik E,Sun Y,Dennis AT,et al. Inhibition of creb-cbp signaling improves fibroblast plasticity for direct cardiac reprogramming[J]. Cells,2021,10(7):1572.

[32] Kurotsu S,Sadahiro T,Fujita R,et al. Soft matrix promotes cardiac reprogramming via inhibition of yap/taz and suppression of fibroblast signatures[J]. Stem Cell Reports,2020,15(3):612-628.

[33] Herum KM,Choppe J,Kumar A,et al. Mechanical regulation of cardiac fibroblast profibrotic phenotypes[J]. Mol Biol Cell,2017,28(14):1871-1882.

[34] Song SY,Yoo J,Go S,et al. Cardiac-mimetic cell-culture system for direct cardiac reprogramming[J]. Theranostics,2019,9(23):6734-6744.

[35] Li Y,Dal-Pra S,Mirotsou M,et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs[J]. Sci Rep,2016,6:38815.

[36] Paoletti C,Marcello E,Melis ML,et al. Cardiac tissue-like 3d microenvironment enhances route towards human fibroblast direct reprogramming into induced cardiomyocytes by micrornas[J]. Cells,2022,11(5):800.

[37] Kim H,Song BW,Park SJ,et al. Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes[J]. Sci Adv,2022,8(8):eabj6621.

[38] Chang Y,Lee E,Kim J,et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier[J]. Biomaterials,2019,192:500-509.

[39] Wang Q,Song Y,Chen J,et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration[J]. Biomaterials,2021,276:121028.

[40] Vaseghi H,Liu J,Qian L. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell,2017,8(10):724-734.

[41] Chen Y,Yang Z,Zhao ZA,et al. Direct reprogramming of fibroblasts into cardiomyocytes[J]. Stem Cell Res Ther,2017,8(1):118.

[42] Sauls K,Greco TM,Wang L,et al. Initiating events in direct cardiomyocyte reprogramming[J]. Cell Rep,2018,22(7):1913-1922.

更新日期/Last Update: 2023-11-15