[1]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177-180,185.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
 LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(2):177-180,185.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
点击复制

肠道菌群及其代谢物与痛风()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年2期
页码:
177-180,185
栏目:
综述
出版日期:
2023-02-25

文章信息/Info

Title:
Intestinal Flora and Its Metabolites and Gout
作者:
卢燕12 刘亚萍 12 罗强 2 张全波 12 汪汉 12
川北医学院,四川 南充 637000; 2. 西南交通大学附属医院 成都市第三人民医院心内科 成都市心血管病研究所 ,四川 成都 610031)
Author(s):
LU Yan12LIU Yaping12LUO Qiang2ZHANG Quanbo12WANG Han2
(1.North Sichuan Medical College,Nanchong 637000 ,Sichuan,China; 2.,Department of Cardiology,The Affiliated Hospital of Southwest Jiaotong University,The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu,Chengdu 610031 ,Sichuan,China)
关键词:
肠道菌群肠道代谢产物痛风高尿酸血症
Keywords:
Intestinal flora Intestinal metabolites Gout Hyperuricemia
DOI:
10.16806/j.cnki.issn.1004-3934.2023.02.018
摘要:
肠道是人体内最重要的消化器官和排毒器官,而肠道菌群 则是一个高度多样化的生态系统,其各种菌群及代谢物之间的相互平衡对于人体的健康至关重要。肠道菌群的种类变化、数量失调、定位转移及其代谢产物等失衡与多种疾病有关。目前关于肠道菌群及代谢物与痛风关系的研究日益成为热点。本文通过从肠道菌群及代谢物概况、痛风患者肠道菌群及代谢物改变、肠道微生物及代谢物引起痛风的机制及目前的相关治疗方面进行了概述。
Abstract:
The gut is the most important digestive organ and detoxification organ in the human body,and the gut flora is a highly diverse ecosystem. The mutual balance between them is crucial to human health. Imbalances in the variety,quantity,location transfer and metabolites of intestinal flora are related to a variety of diseases. At present,research on the relationship between gut microbiota and metabolites and gout has become a hot topic. In this paper,the overview of gut microbiota and metabolites,the changes of gut microbiota and metabolites in patients with gout,the mechanism of gut microbiota and metabolites causing gout,and the current related treatments were reviewed

参考文献/References:

[1].Molla MD,Bekele A,Melka DS,et al. Hyperuricemia and its associated factors among adult staff members of the ethiopian public health institute,ethiopia[J]. Int J Gen Med,2021,14:1437-1447.
[2].Singh JA,Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum,2020,50(3S):S11-S16.
[3].Song J,Jin C,Shan Z,et al. prevalence and risk factors of hyperuricemia and gout:a cross-sectional survey from 31 provinces in mainland China [J]. J Transl Int Med,2022,10(2):134-145.
[4].Chu Y,Sun S,Huang Y,et al. Metagenomic analysis revealed the potential role of gut microbiome in gout [J]. NPJ Biofilms Microbiomes,2021,7(1):66.
[5].de Sordi L,Khanna V,Debarbieux L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses[J]. Cell Host Microbe,2017,22(6):801-808.e3.
[6].Nicholson JK,Holmes E,Kinross J,et al. Host-gut microbiota metabolic interactions[J]. Science,2012,336(6086):1262-1267.
[7].Stanford J,Charlton K,Stefoska-Needham A,et al. The gut microbiota profile of adults with kidney disease and kidney stones:a systematic review of the literature[J]. BMC Nephrol,2020,21(1):215.
[8].Méndez-Salazar EO,Vázquez-Mellado J,Casimiro-Soriguer CS,et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism[J]. Mol Med,2021,27(1):50.
[9].Guo Z,Zhang J,Wang Z,et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans[J]. Sci Rep,2016,6:20602.
[10].Shao T,Shao L,Li H,et al. Combined signature of the fecal microbiome and metabolome in patients with gout[J]. Front Microbiol,2017,8:268.
[11].Yang HT,Xiu WJ,Liu JK,et al. Gut Microbiota characterization in patients with asymptomatic hyperuricemia:probiotics increased[J]. Bioengineered,2021,12(1):7263-7275.
[12].Park HK,Lee SJ. Treatment of gouty arthritis is associated with restoring the gut microbiota and promoting the production of short-chain fatty acids[J]. Arthritis Res Ther,2022,24(1):51.
[13].Song S,Lou Y,Mao Y,et al. Alteration of gut microbiome and correlated amino acid metabolism contribute to hyperuricemia and Th17-driven inflammation inUox-KO mice[J]. Front Immunol,2022,13:804306.
[14].Kurosaki M,Li Calzi M,Scanziani E,et al. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo:regulation by bacterial lipopolysaccharide[J]. Biochem J,1995,306( Pt 1):225-234.
[15].Srivastava M,Mallard C,Barke T,et al. A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production[J]. J Bacteriol,2011,193(7):1643-1652.
[16].Shu S,Mi W. Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli[J]. Nat Commun,2022,13(1):4576.
[17].Liu Y,Yu P,Sun X,et al. Metabolite target analysis of human urine combined with pattern recognition techniques for the study of symptomatic gout[J]. Mol Biosyst,2012,8(11):2956-2963.
[18].Vadakedath S,Kandi V. Probable potential role of urate transporter genes in the development of metabolic disorders[J]. Cureus,2018,10(3):e2382.
[19].Xu X,Li C,Zhou P,et al. Uric acid transporters hiding in the intestine[J]. Pharm Biol,2016,54(12):3151-3155.
[20].Yin H,Liu N,Chen J. The role of the intestine in the development of hyperuricemia[J]. Front Immunol,2022,13:845684.
[21].Merriman TR. An update on the genetic architecture of hyperuricemia and gout[J]. Arthritis Res Ther,2015,17(1):98.
[22].Maiuolo J,Oppedisano F,Gratteri S,et al. Regulation of uric acid metabolism and excretion[J]. Int J Cardiol,2016,213:8-14.
[23].Lim MY,Rho M,Song YM,et al. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet[J]. Sci Rep,2014,4:7348.
[24].Pan L,Han P,Ma S,et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia[J]. Acta Pharm Sin B,2020,10(2):249-261.
[25].Ratajczak W,Ry? A,Mizerski A,et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs) [J] . Acta Biochim Pol,2019,66(1):1-12.
[26].Gou HZ,Zhang YL,Ren LF,et al. How do intestinal probiotics restore the intestinal barrier? [J]. Front Microbiol ,2022,13:929346.
[27].Balaguer F,Enrique M,Llopis S,et al. Lipoteichoic acid from Bifidobacterium animalis subsp. lactis BPL1:a novel postbiotic that reduces fat deposition via IGF-1 pathway[J]. Microb Biotechnol,2022,15(3):805-816.
[28].Chen M,Lin W,Li N,et al. Therapeutic approaches to colorectal cancervia?strategies based on modulation of gut microbiota[J]. Front Microbiol,2022,13:945533.
[29].Sun M,Wu W,Liu Z,et al. Microbiota metabolite short chain fatty acids,GPCR,and inflammatory bowel diseases[J]. J Gastroenterol,2017,52(1):1-8.
[30].Puertollano E,Kolida S,Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome[J]. Curr Opin Clin Nutr Metab Care,2014,17(2):139-144.
[31].Vieira AT,Galv?o I,Macia LM,et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice[J]. J Leukoc Biol,2017,101(1):275-284.
[32].Weisshaar S,Litschauer B,Reichardt B,et al. Cardiovascular risk and mortality in patients with hyperuricemia treated with febuxostat or allopurinol:a retrospective nation-wide cohort study in Austria 2014-2017[J]. Rheumatol Int,2022,42(9):1597-1603.
[33].Liu ZQ,Sun X,Liu ZB,et al. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity[J]. J Pharm Pharmacol,2022,74(7):919-929.
[34].Wang LM,Wang P,Teka T,et al. 1H NMR and UHPLC/Q-Orbitrap-MS-based metabolomics combined with 16S rRNA gut microbiota analysis revealed the potential regulation mechanism of nuciferine in hyperuricemia rats[J]. J Agric Food Chem,2020,68(47):14059-14070.
[35].Bian M,Wang J,Wang Y,et al. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail[J]. Biomed Pharmacother,2020,131:110719.
[36].Yang Q,Zhang J,Li J. Clinical effect of the guizhi shaoyao zhimu decoction in the treatment of hyperuricemia[J]. Biomed Res Int,2022:5186210.
[37].Kang L,Miao JX,Cao LH,et al. Total glucosides of herbaceous peony (Paeonia lactiflora Pall.) flower attenuate adenine- and ethambutol-induced hyperuricaemia in rats[J]. J Ethnopharmacol,2020,261:113054.
[38].Gao J,Azad MAK,Han H,et al. Impact of prebiotics on enteric diseases and oxidative stress[J]. Curr Pharm Des,2020,26(22):2630-2641.
[39].Guo Y,Yu Y,Li H,et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice[J]. Eur J Nutr,2021,60(4):2217-2230.
[40].Ni C,Li X,Wang L,et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activityvia?a short-chain fatty acid-dependent mechanism[J]. Food Funct,2021,12(15):7054-7067.
[41].Wu Y,Ye Z,Feng P,et al. Limosilactobacillus fermentum?JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid[J]. Gut Microbes,2021,13(1):1-18.
[42].Xie YC,Jing XB,Chen X,et al. Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition:a case report[J]. Ther Adv Chronic Dis,2022,13:20406223221117449.
[43].Zhang L,Ma X,Liu P,et al. Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis[J]. Exp Biol Med (Maywood),2021,246(13):1563-1575.
[44].Xie WR,Yang XY,Deng ZH,et al. Effects of washed microbiota transplantation on serum uric acid levels,symptoms,and intestinal barrier function in patients with acute and recurrent gout:a pilot study[J]. Dig Dis,2022,40(5):684-690.

相似文献/References:

[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
 YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(2):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
 ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
 LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(2):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
 LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(2):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[7]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
 ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(2):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[8]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
 JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(2):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[9]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
 LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
[10]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
 UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(2):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]

更新日期/Last Update: 2023-03-23