参考文献/References:
[1] Kornej J,B?rschel CS,Benjamin EJ,et al. Epidemiology of atrial fibrillation in the 21st century:novel methods and new insights[J]. Circ Res,2020 ,127(1):4-20.
[2] Al-Khatib SM,Stevenson WG,Ackerman MJ,et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death:Executive Summary:a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society[J]. Circulation,2018,138(13):e210-e271.
[3] Essien UR,Kornej J,Johnson AE,et al. Social determinants of atrial fibrillation[J]. Nat Rev Cardiol,2021,18(11):763-773.
[4] Shivkumar K,Ajijola OA,Anand I,et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics[J]. J Physiol,2016,594(14):3911-3954.
[5] Shen MJ,Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias[J]. Circ Res,2014 ,114(6):1004-1021.
[6] Sharifov OF,Fedorov VV,Beloshapko GG,et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs[J]. J Am Coll Cardiol,2004,43(3):483-490.
[7] Polovina MM,Vukicevic M,Banko B,et al. Brugada syndrome:a general cardiologist’s perspective [J]. Eur J Intern Med,2017,44:19-27.
[8] Ziegler KA,Ahles A,Wille T,et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice[J]. Cardiovasc Res,2018,114(2):291-299.
[9] Hasan W. Autonomic cardiac innervation:development and adult plasticity[J]. Organogenesis,2013,9(3):176-193.
[10] Pavlov VA,Chavan SS,Tracey KJ. Molecular and functional neuroscience in immunity[J]. Annu Rev Immunol,2018,36:783-812.
[11] Koba S,Hanai E,Kumada N,et al. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla[J]. J Physiol,2018,596(19):4581-4595.
[12] Smith PM,Ferguson AV. Circulating signals as critical regulators of autonomic state—Central roles for the subfornical organ[J]. Am J Physiol Regul Integr Comp Physiol,2010,299(2):R405-R415.
[13] Reardon C,Murray K,Lomax AE. Neuroimmune communication in health and disease[J]. Physiol Rev,2018,98(4):2287-2316.
[14] Cancelliere NM,Black EA,Ferguson AV. Neurohumoral integration of cardiovascular function by the lamina terminalis[J]. Curr Hypertens Rep,2015,17(12):93.
[15] Felten DL,Livnat S,Felten SY,et al. Sympathetic innervation of lymph nodes in mice[J]. Brain Res Bull,1984,13(6):693-699.
[16] Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease[J]. Nat Med,2018,24(6):711-720.
[17] Heid T,Sager HB,Courties G,et al. Chronic variable stress activates hematopoietic stem cells[J]. Nat Med,2014,20(7):754-758.
[18] Ajijola OA,Hoover DB,Simerly TM,et al. Inflammation,oxidative stress,and glial cell activation characterize stellate ganglia from humans with electrical storm[J]. JCI Insight,2017,2(18):e94715.
[19] Rizzo S,Basso C,Troost D,et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias[J]. Circ Arrhythm Electrophysiol,2014,7(2):224-229.
[20] Yu Y,Zhang ZH,Wei SG,et al. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction[J]. Hypertension,2010,55(3):652-659.
[21] Gawa?ko M,Balsam P,Lodziński P,et al. Cardiac arrhythmias in autoimmune diseases[J]. Circ J,2020,84(5):685-694.
[22] Bratton BO,Martelli D,McKinley MJ,et al. Neural regulation of inflammation:no neural connection from the vagus to splenic sympathetic neurons[J]. Exp Physiol,2012,97(11):1180-1185.
[23] Wang M,Li S,Zhou X,et al. Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model[J]. Int J Cardiol,2017,248:286-293.
[24] Deng J,Zhou X,Wang M,et al. The effects of interleukin 17A on left stellate ganglion remodeling are mediated by neuroimmune communication in normal structural hearts[J]. Int J Cardiol,2019,279:64-71.
[25] Wang Y,Yu L,Meng G,et al. Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines[J]. Int J Cardiol,2018,269:259-264.
[26] Coote JH,Chauhan RA. The sympathetic innervation of the heart:important new insights[J]. Auton Neurosci,2016,199:17-23.
[27] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac?autonomic remodeling and ventricular arrhythmia inducibility in?a?post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.
[28] Stavrakis S,Humphrey MB,Scherlag BJ,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial?fibrillation[J]. J Am Coll Cardiol,2015,65(9):867-875.
[29] Zhou Z,Li S,Sheng X,et al. Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system:a potential treatment target for atrial fibrillation [J]. Int J Cardiol,2020,302:59-66.
[30] Zhou Z,Liu C,Xu S,et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model[J]. Basic Res Cardiol,2022,117(1):34.
[31] Chen J,Yin D,He X,et al. Modulation of activated astrocytes in the hypothalamus paraventricular nucleus to prevent ventricular arrhythmia complicating acute myocardial infarction[J]. Int J Cardiol,2020,308:33-41.
[32] Wang S,Wu L,Li X,et al. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model[J]. J Neuroinflammation,2019,16(1):139.
相似文献/References:
[1]那丞 黄织春.干预自主神经对心房颤动影响的研究进展[J].心血管病学进展,2021,(1):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
NA Cheng,HUANG Zhichun.Effect of Autonomic Nerve Intervention on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(3):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[2]郭辅定 殷铭 赖燕秋 江洪.蒽环类药物相关心血管疾病与自主神经调控展望[J].心血管病学进展,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
GUO Fuding,YIN Ming,LAI Yanqiu,et al.Anthracycline-induced Cardiovascular Diseases and Autonomic Nervous Regulation[J].Advances in Cardiovascular Diseases,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
[3].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(3):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[4]胡睿杰 江洪.昼夜节律与心脏代谢研究进展[J].心血管病学进展,2023,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
HU Ruijie,JIANG Hong.Circadian Rhythm and Cardiac Metabolism[J].Advances in Cardiovascular Diseases,2023,(3):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
[5]刘子韩 余锂镭.下丘脑腹内侧核 影响心脏自主神经的研究进展[J].心血管病学进展,2023,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
LIU Zihan,YU Lilei.Ventromedial Hypothalamic Nucleus and Cardiac A utonomic Nervous System[J].Advances in Cardiovascular Diseases,2023,(3):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
[6]刘恒洋 江洪 余锂镭.肥大细胞在心力衰竭中的作用及其潜在的自主神经机制[J].心血管病学进展,2024,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
LIU Hengyang,JIANG Hong,YU Lilei.Role of Mast Cells in Heart Failure and Their Underlying Autonomic Neural Mechanisms[J].Advances in Cardiovascular Diseases,2024,(3):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]