[1]李锐 江洪.神经免疫相互作用与心律失常的研究进展[J].心血管病学进展,2023,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]
 LI Rui,JIANG Hong.Neuroimmune Interaction and Arrhythmia[J].Advances in Cardiovascular Diseases,2023,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]
点击复制

神经免疫相互作用与心律失常的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年3期
页码:
247
栏目:
综述
出版日期:
2023-03-25

文章信息/Info

Title:
Neuroimmune Interaction and Arrhythmia
作者:
李锐 江洪
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室 武汉大学心脏自主神经研究中心,湖北 武汉 430060)
Author(s):
LI RuiJIANG Hong
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute of Wuhan University,Hubei Key Laboratory of Cardiology,Cardiac Autonomic Nervous System Research Center of Wuhan University,Wuhan 430060 ,Hubei,China)
关键词:
神经免疫自主神经系统心律失常
Keywords:
NeuroimmunityAutonomic nervous systemArrhythmia
DOI:
10.16806/j.cnki.issn.1004-3934.2023.03.013
摘要:
自主神经系统失衡与心血管疾病的发生和发展密切相关,支配心脏的交感神经与副交感神经失衡可通过复杂的电生理机制触发心律失常,同时免疫炎症紊乱也是心律失常的重要诱发因素,神经免疫相互作用恶化心脏重构,显著增加了心律失常的发生风险。明确心脏自主神经的神经免疫通信,阐明其在心律失常中的作用机制,有利于发现心律失常新的治疗调控靶点,有望为抗心律失常的治疗方案提供新思路。
Abstract:
Autonomic nervous system imbalance is closely related to the occurrence and development of cardiovascular disease. The imbalance of sympathetic and parasympathetic nerves that innervate the heart can trigger arrhythmias through complex electrophysiological mechanisms . At the same time,the immune inflammatory disorder is an important inducing factor of arrhythmia. Neuroimmune interaction deteriorates cardiac remodeling, and significantly increases the risk of arrhythmia occurrence. Clarifying the neuroimmune communication of cardiac autonomic nerves and elucidating its pathological mechanism in arrhythmia is conducive to discovering new therapeutic and regulatory targets for arrhythmia,which is expected to provide new ideas for anti-arrhythmia treatment.

参考文献/References:

[1] Kornej J,B?rschel CS,Benjamin EJ,et al. Epidemiology of atrial fibrillation in the 21st century:novel methods and new insights[J]. Circ Res,2020 ,127(1):4-20.

[2] Al-Khatib SM,Stevenson WG,Ackerman MJ,et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death:Executive Summary:a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society[J]. Circulation,2018,138(13):e210-e271.

[3] Essien UR,Kornej J,Johnson AE,et al. Social determinants of atrial fibrillation[J]. Nat Rev Cardiol,2021,18(11):763-773.

[4] Shivkumar K,Ajijola OA,Anand I,et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics[J]. J Physiol,2016,594(14):3911-3954.

[5] Shen MJ,Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias[J]. Circ Res,2014 ,114(6):1004-1021.

[6] Sharifov OF,Fedorov VV,Beloshapko GG,et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs[J]. J Am Coll Cardiol,2004,43(3):483-490.

[7] Polovina MM,Vukicevic M,Banko B,et al. Brugada syndrome:a general cardiologist’s perspective [J]. Eur J Intern Med,2017,44:19-27.

[8] Ziegler KA,Ahles A,Wille T,et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice[J]. Cardiovasc Res,2018,114(2):291-299.

[9] Hasan W. Autonomic cardiac innervation:development and adult plasticity[J]. Organogenesis,2013,9(3):176-193.

[10] Pavlov VA,Chavan SS,Tracey KJ. Molecular and functional neuroscience in immunity[J]. Annu Rev Immunol,2018,36:783-812.

[11] Koba S,Hanai E,Kumada N,et al. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla[J]. J Physiol,2018,596(19):4581-4595.

[12] Smith PM,Ferguson AV. Circulating signals as critical regulators of autonomic state—Central roles for the subfornical organ[J]. Am J Physiol Regul Integr Comp Physiol,2010,299(2):R405-R415.

[13] Reardon C,Murray K,Lomax AE. Neuroimmune communication in health and disease[J]. Physiol Rev,2018,98(4):2287-2316.

[14] Cancelliere NM,Black EA,Ferguson AV. Neurohumoral integration of cardiovascular function by the lamina terminalis[J]. Curr Hypertens Rep,2015,17(12):93.

[15] Felten DL,Livnat S,Felten SY,et al. Sympathetic innervation of lymph nodes in mice[J]. Brain Res Bull,1984,13(6):693-699.

[16] Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease[J]. Nat Med,2018,24(6):711-720.

[17] Heid T,Sager HB,Courties G,et al. Chronic variable stress activates hematopoietic stem cells[J]. Nat Med,2014,20(7):754-758.

[18] Ajijola OA,Hoover DB,Simerly TM,et al. Inflammation,oxidative stress,and glial cell activation characterize stellate ganglia from humans with electrical storm[J]. JCI Insight,2017,2(18):e94715.

[19] Rizzo S,Basso C,Troost D,et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias[J]. Circ Arrhythm Electrophysiol,2014,7(2):224-229.

[20] Yu Y,Zhang ZH,Wei SG,et al. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction[J]. Hypertension,2010,55(3):652-659.

[21] Gawa?ko M,Balsam P,Lodziński P,et al. Cardiac arrhythmias in autoimmune diseases[J]. Circ J,2020,84(5):685-694.

[22] Bratton BO,Martelli D,McKinley MJ,et al. Neural regulation of inflammation:no neural connection from the vagus to splenic sympathetic neurons[J]. Exp Physiol,2012,97(11):1180-1185.

[23] Wang M,Li S,Zhou X,et al. Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model[J]. Int J Cardiol,2017,248:286-293.

[24] Deng J,Zhou X,Wang M,et al. The effects of interleukin 17A on left stellate ganglion remodeling are mediated by neuroimmune communication in normal structural hearts[J]. Int J Cardiol,2019,279:64-71.

[25] Wang Y,Yu L,Meng G,et al. Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines[J]. Int J Cardiol,2018,269:259-264.

[26] Coote JH,Chauhan RA. The sympathetic innervation of the heart:important new insights[J]. Auton Neurosci,2016,199:17-23.

[27] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac?autonomic remodeling and ventricular arrhythmia inducibility in?a?post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.

[28] Stavrakis S,Humphrey MB,Scherlag BJ,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial?fibrillation[J]. J Am Coll Cardiol,2015,65(9):867-875.

[29] Zhou Z,Li S,Sheng X,et al. Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system:a potential treatment target for atrial fibrillation [J]. Int J Cardiol,2020,302:59-66.

[30] Zhou Z,Liu C,Xu S,et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model[J]. Basic Res Cardiol,2022,117(1):34.

[31] Chen J,Yin D,He X,et al. Modulation of activated astrocytes in the hypothalamus paraventricular nucleus to prevent ventricular arrhythmia complicating acute myocardial infarction[J]. Int J Cardiol,2020,308:33-41.

[32] Wang S,Wu L,Li X,et al. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model[J]. J Neuroinflammation,2019,16(1):139.

相似文献/References:

[1]那丞 黄织春.干预自主神经对心房颤动影响的研究进展[J].心血管病学进展,2021,(1):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 NA Cheng,HUANG Zhichun.Effect of Autonomic Nerve Intervention on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(3):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[2]郭辅定 殷铭 赖燕秋 江洪.蒽环类药物相关心血管疾病与自主神经调控展望[J].心血管病学进展,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
 GUO Fuding,YIN Ming,LAI Yanqiu,et al.Anthracycline-induced Cardiovascular Diseases and Autonomic Nervous Regulation[J].Advances in Cardiovascular Diseases,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
[3].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(3):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[4]胡睿杰 江洪.昼夜节律与心脏代谢研究进展[J].心血管病学进展,2023,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
 HU Ruijie,JIANG Hong.Circadian Rhythm and Cardiac Metabolism[J].Advances in Cardiovascular Diseases,2023,(3):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
[5]刘子韩 余锂镭.下丘脑腹内侧核 影响心脏自主神经的研究进展[J].心血管病学进展,2023,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
 LIU Zihan,YU Lilei.Ventromedial Hypothalamic Nucleus and Cardiac A utonomic Nervous System[J].Advances in Cardiovascular Diseases,2023,(3):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
[6]刘恒洋 江洪 余锂镭.肥大细胞在心力衰竭中的作用及其潜在的自主神经机制[J].心血管病学进展,2024,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
 LIU Hengyang,JIANG Hong,YU Lilei.Role of Mast Cells in Heart Failure and Their Underlying Autonomic Neural Mechanisms[J].Advances in Cardiovascular Diseases,2024,(3):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]

更新日期/Last Update: 2023-04-24