[1]屈展 刘凯.人工智能技术在高血压诊疗中的应用进展[J].心血管病学进展,2023,(1):48-50,56.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 QU Zhan,LIU Kai.Applications of Artificial Intelligence for Hypertension Management[J].Advances in Cardiovascular Diseases,2023,(1):48-50,56.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
点击复制

人工智能技术在高血压诊疗中的应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年1期
页码:
48-50,56
栏目:
综述
出版日期:
2023-01-25

文章信息/Info

Title:
Applications of Artificial Intelligence for Hypertension Management
作者:
屈展12 刘凯1
(1.四川大学华西医院心内科,四川 成都 610041;2.四川大学华西临床医学院,四川 成都 610041)
Author(s):
QU Zhan12LIU Kai 1
(1.Department of Cardiology,West China Hospital of Sichuan University,Chengdu 610041,Sichuan,China2.West China School of Medicine,Sichuan University,Chengdu 610041,Sichuan,China)
关键词:
人工智能机器学习深度学习高血压
Keywords:
Artificial intelligenceMachine learningDeep learningHypertension
DOI:
10.16806/j.cnki.issn.1004-3934.2023.01.012
摘要:
高血压知晓率、治疗率和达标率不足是中国高血压管理的主要障碍。人工智能的出现揭示了高血压管理的新策略,例如基于远程医疗和大数据驱动的数字医疗。大量证据表明人工智能在高血压管理中的应用是可行的,使得慢性病管理朝着数字化管理的未来模式迈出了一大步。现就近期高血压中人工智能的应用进行综述。
Abstract:
Insufficient awareness rate,treatment rate and compliance rate of hypertension are the main obstacles to Chinese hypertension management. The emergence of artificial intelligence(AI) has revealed new strategies for the hypertension management,such as telemedicine and big data-driven digital medicine. Accumulating evidence also indicates that the application of AI in hypertension management is feasible. It is a significant step towards the future pattern of digital management in chronic disease management. This article reviews the recent application of AI in hypertension.

参考文献/References:

[1] Moor J. The Dartmouth College artificial intelligence conference:the next fifty years[J]. AI Magazine,2006,27(4):87.

[2] Krittanawong C,Zhang H,Wang Z,et al. Artificial intelligence in precision cardiovascular medicine [J]. J Am Coll Cardiol,2017,69(21):2657-2664.

[3] Smith LN. Cyclical learning rates for training neural networks[C]. 2017 IEEE Winter Conference on Applications of Computer Vision,2017:464-472.

[4] Srivastava N,Hinton G,Krizhevsky A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res,2014,15(1):1929-1958.

[5] Krittanawong C,Bomback AS,Baber U,et al. Future direction for using artificial intelligence to predict and manage hypertension[J]. Curr Hypertens Rep,2018,20(9):75.

[6] Petrov D,Gutman BA,Yu SJ,et al. Machine learning for large-scale quality control of 3D shape models in neuroimaging[J]. Mach Learn Med Imaging,2017,10541:371-378.

[7] Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques[J]. Artif Intell Med,2011,53(2):127-138.

[8] Solà J,Proen?a M,Braun F,et al. Continuous non-invasive monitoring of blood pressure in the operating room:a cuffless optical technology at the fingertip[J]. Curr Dir Biomed Eng ,2016, 2:267 -271.

[9] Miao F,Fu N,Zhang YT,et al. A novel continuous blood pressure estimation approach based on data mining techniques[J]. IEEE J Biomed Health Inform ,2017,21(6):1730-1740.

[10] Wang L,Zhou W,Xing Y,et al. A novel neural network model for blood pressure estimation using photoplethysmography without electrocardiogram[J]. J Healthc Eng,2018,2018:7804243.

[11] Khalid SG,Zhang J,Chen F,et al. Blood pressure estimation using photoplethysmography only:comparison between different machine learning approaches[J]. J Healthc Eng,2018,2018:1548647.

[12] Slapni?ar G,Mlakar N,Lu?trek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network[J]. Sensors(Basel),2019,19(15):3420.

[13] Banerjee R,Choudhury AD,Sinha A,et al. HeartSense:smart phones to estimate blood pressure from photoplethysmography[C]. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems,2014:322-323.

[14] Huang S,Xu Y,Yue L,et al. Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area[J]. Hypertens Res,2010, 33 (7):722-726.

[15] Pei Z,Liu J,Liu M,et al. Risk-predicting model for incident of essential hypertension based on environmental and genetic factors with support vector machine[J]. Interdiscip Sci,2018, 10(1):126-130.

[16] Li C,Sun D,Liu J,et al. A prediction model of essential hypertension based on genetic and environmental risk factors in Northern Han Chinese[J]. Int J Med Sci ,2019,16(6):793-799.

[17] Ye C,Fu T,Hao S,et al. Prediction of incident hypertension within the next year:prospective study using statewide electronic health records and machine learning[J]. J Med Internet Res,2018,20(1):e22.

[18] Kanegae H,Suzuki K,Fukatani K,et al. Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques[J]. J Clin Hypertens(Greenwich),2020, 22 (3):445-450.

[19] Sakr S,Elshawi R,Ahmed A,et al. Using machine learning on cardiorespiratory fitness data for predicting hypertension:The Henry Ford ExercIse Testing(FIT) Project[J]. PLoS One,2018, 13 (4):e0195344.

[20] Sun J,McNaughton CD,Zhang P,et al. Predicting changes in hypertension control using electronic health records from a chronic disease management program[J]. J Am Med Inform Assoc,2014,21(2):337-344.

[21] Mohammadi R,Jain S,Agboola S,et al. Learning to identify patients at risk of uncontrolled hypertension using electronic health records data[J]. AMIA Jt Summits Transl Sci Proc,2019,2019:533-542.

[22] Lacson RC,Baker B,Suresh H,et al. Use of machine-learning algorithms to determine features of systolic blood pressure variability that predict poor outcomes in hypertensive patients[J]. Clin Kidney J,2019,12(2):206-212.

[23] Wu X,Yuan X,Wang W,et al. Value of a machine learning approach for predicting clinical outcomes in young patients with hypertension[J]. Hypertension,2020,75(5):1271-1278.

[24] Chunyu L,Ran L,Junteng Z,et al. Characterizing the critical features when personalizing antihypertensive drugs using spectrum analysis and machine learning methods[J]. Artif Intell Med,2020,104:101841.

[25] Duan T,Rajpurkar P,Laird D,et al. Clinical value of predicting individual treatment effects for intensive blood pressure therapy[J]. Circ Cardiovasc Qual Outcomes,2019,12(3):e005010.

[26] Aziz F,Malek S,Mhd Ali A,et al. Determining hypertensive patients’ beliefs towards medication and associations with medication adherence using machine learning methods[J]. PeerJ,2020,8:e8286.

相似文献/References:

[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[2]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(1):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[3]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
 WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(1):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[4]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
 LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[5]艾克力亚尔·艾尼瓦尔 马翔.机器学习CNN模型在心血管疾病诊疗中的临床应用及研究进展[J].心血管病学进展,2021,(6):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
 Aikeliyaer.ainiwaerMA xiang.Application of Convolutional Neural Network Model of Machine Learning for the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
[6]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
 WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(1):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[7]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(1):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[8]陈忠秀 李娅姣 李春梅 李晨.无导丝虚拟血流储备分数技术在稳定性冠心病介入治疗中的指导价值[J].心血管病学进展,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
 CHEN Zhongxiu,LI Yajiao,LI Chunmei,et al.The Value of Wireless Virtual Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention in Stable Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2022,(1):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
[9]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(1):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[10]中国智慧化血管健康全生命周期数字管理分级诊疗实践指南编写组 中国医药教育协会血管医学专业委员会 中国研究型医院学会移动医疗专业委员会 北京大学医学部血管健康研究中心 分子心血管学教育部重点实验室(北京大学).中国智慧化血管健康全生命周期数字管理分级诊疗实践指南(2022第一次报告)[J].心血管病学进展,2023,(1):71.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.017]
 China Medicine Education Association Vascular Medicine Professional Committee,et al..Digital Hierarchic Healthcare Clinical Practice Guideline for Intellectualized Whole-life Vascular Health Management in China[J].Advances in Cardiovascular Diseases,2023,(1):71.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.017]
[11]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[12]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
 HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(1):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[13]秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖.人工智能在心房颤动预测中的价值[J].心血管病学进展,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
 QIN Dimao,LI Mengyi,WU Shuang,et al.Artificial Intelligence for Predicting Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(1):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]

更新日期/Last Update: 2023-03-10