[1]邱钰只吴秀山李小平.右位心形成机制假说及致病基因[J].心血管病学进展,2022,(11):1011.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.011]
 QIU Yuzhi,WU Xiushan,LI Xiaoping.Hypotheses on Mechanism and Pathogenic Genes?n Formation of Dextrocardia[J].Advances in Cardiovascular Diseases,2022,(11):1011.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.011]
点击复制

右位心形成机制假说及致病基因()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年11期
页码:
1011
栏目:
综述
出版日期:
2022-11-25

文章信息/Info

Title:
Hypotheses on Mechanism and Pathogenic Genes?n Formation of Dextrocardia
作者:
邱钰只1吴秀山2李小平13
(1.电子科技大学医学院,四川 成都 611731;2.湖南师范大学生命科学学院心脏发育研究中心,湖南 长沙 410081;3.电子科技大学医学院 四川省人民医院心内科,四川 成都 610072)
Author(s):
QIU Yuzhi1WU Xiushan2LI Xiaoping13
(1.School of Medicine,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China; 2.Center of Heart Development,College of Life Science,Hunan Normal University,Changsha 410081,Hunan,China; 3.School of Medicine,University of Electronic Science and Technology of China;Department of Cardiology,Sichuan Provincial Peoples Hospital,Chengdu 610072,Sichuan,China)
关键词:
右位心基因调控网络左右不对称发育
Keywords:
DextrocardiaGene-regulatory networkLeft-right asymmetric development
DOI:
10.16806/j.cnki.issn.1004-3934.2022.11.011
摘要:
脊椎动物中左右体轴不对称发育异常是真性右位心发生的主要机制,其中基因调控网络及其上下游成员异常是其重要的致病因素,可导致右位心及其他内脏异位。右位心常伴多种异型综合征和复杂先天性心脏畸形,具有先天遗传性,预后不良。现针对基因调控网络及其上下游信号发生和放大的可能机制,综述右位心形成的相关假说,结合临床患者基因测序结果,提出其可能的致病基因:如纤毛相关蛋白基因(DNAH11、CCDC103和ANKS3)、基因调控网络相关基因(GDF1、CFC1、MMP21和ZIC3)及MEGF8等,以期为右位心基因筛查及临床早期干预提供依据。
Abstract:
The left-right asymmetric development anomaly can be the chief mechanism of true dextrocardia in vertebrates.The abnormality of gene-regulatory network(GRN) and its upstream and downstream members is an important pathogenic factor,which can lead to dextrocardia and other heterotaxia. Dextrocardia is often associated with multiple heteromorphic syndromes and complex congenital heart malformations,which is congenital heredity and has a poor prognosis. This article reviews the relevant hypotheses of dextrocardium formation based on the GRN and its possible mechanisms of upstream and downstream signal generation and amplification,and proposes the possible pathogenic genes,such as ciliary related protein genes(DNAH11,CCDC103 and ANKS3),GRN-related genes(GDF1,CFC1,MMP21 and ZIC3) and MEGF8,in combination with the gene sequencing results of clinical patients,in order to provide a basis for gene screening and early clinical intervention of dextrocardia

参考文献/References:

[1] Twigg SRF,Lloyd D,Jenkins D,et al. Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization[J]. Am J Hum Genet,2012,91(5):897-905.

[2] Desgrange A,le Garrec JF,Meilhac SM. Left-right asymmetry in heart development and disease:forming the right loop[J]. Development,2018,145(22):dev162776.

[3] McDowell G,Rajadurai S,Levin M. From cytoskeletal dynamics to organ asymmetry:a nonlinear,regulative pathway underlies left-right patterning[J]. Philos Trans R Soc Lond B Biol Sci,2016,371(1710):20150409.

[4] Vandenberg LN,Levin M. Perspectives and open problems in the early phases of left-right patterning[J]. Semin Cell Dev Biol,2009,20(4):456-463.

[5] Shinohara K,Hamada H. Cilia in left-right symmetry breaking[J]. Cold Spring Harb Perspect Biol,2017,9(10):a028282.

[6] 何菲,吴晓云. 右位心形成相关分子机制及调控[J]. 国际儿科学杂志,2013,40(4):359-362.

[7] Desgrange A,le Garrec JF,Bernheim S,et al. Transient nodal signaling in left precursors coordinates opposed asymmetries shaping the heart loop[J]. Dev Cell,2020,55(4):413-431.e6.

[8] Bolkier Y,Barel O,Marek-Yagel D,et al. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects[J]. J Med Genet,2022,59(7):691-696.

[9] Catana A,Apostu AP. The determination factors of left-right asymmetry disorders—A short review[J]. Clujul Med,2017,90(2):139-146.

[10]刘思捷,李婷婷,陈笋,等. CITED2基因在内脏反位患者中的突变分析[J]. 上海交通大学学报(医学版),2019,39(5):500-504.

[11]Bartoloni L,Blouin JL,Pan Y,et al. Mutations in the DNAH11(axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia[J]. Proc Natl Acad Sci U S A,2002,99(16):10282-10286.

[12]Pennekamp P,Menchen T,Dworniczak B,et al. Situs inversus and ciliary abnormalities:20?years later,what is the connection?[J]. Cilia,2015,4(1):1.

[13]Liu S,Chen W,Zhan Y,et al. DNAH11 variants and its association with congenital heart disease and heterotaxy syndrome[J]. Sci Rep,2019,9(1):6683.

[14]Lucas JS,Adam EC,Goggin PM,et al. Static respiratory cilia associated with mutations in DNAHC11/DNAH11:a mouse model of PCD[J]. Hum Mutat,2012,33(3):495-503.

[15]Layton WM. Random determination of a developmental process:reversal of normal visceral asymmetry in the mouse[J]. J Hered,1976,67(6):336-338.

[16]Schwabe GC,Hoffmann K,Loges NT,et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations[J]. Hum Mutat,2008,29(2):289-298.

[17]Xia H,Huang X,Deng S,et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease[J]. PLoS One,2021,16(6):e0252786.

[18]Panizzi JR,Becker-Heck A,Castleman VH,et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms[J]. Nat Genet,2012,44(6):714-719.

[19]Burwick RM,Govindappagari S,Sanchez-Lara PA. Situs inversus totalis and prenatal diagnosis of a primary ciliary dyskinesia[J]. J Clin Ultrasound,2021,49(1):71-73.

[20]Rankin CT,Bunton T,Lawler AM,et al. Regulation of left-right patterning in mice by growth/differentiation factor-1[J]. Nat Genet,2000,24(3):262-265.

[21]Kaasinen E,Aittom?ki K,Eronen M,et al. Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1(GDF1)[J]. Hum Mol Genet,2010,19(14):2747-2753.

[22]Jin SC,Homsy J,Zaidi S,et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands[J]. Nat Genet,2017,49(11):1593-1601.

[23]Shen MM,Schier AF. The EGF-CFC gene family in vertebrate development[J]. Trends Genet,2000,16(7):303-309.

[24]Bamford RN,Roessler E,Burdine RD,et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects[J]. Nat Genet,2000,26(3):365-369.

[25]Batta A. Carpenter syndrome—A genetic disease[J]. SIJB,2019,2(12):297-301.

[26]Zhang Z,Alpert D,Francis R,et al. Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy[J]. Proc Natl Acad Sci U S A,2009,106(9):3219-3224.

[27]Gabriel GC,Young CB,Lo CW. Role of cilia in the pathogenesis of congenital heart disease[J]. Semin Cell Dev Biol,2021,110:2-10.

[28]Perles Z,Moon S,Ta-Shma A,et al. A human laterality disorder caused by a homozygous deleterious mutation in MMP21[J]. J Med Genet,2015,52(12):840-847.

[29]Akawi N,McRae J,Ansari M,et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families[J]. Nat Genet,2015,47(11):1363-1369.

[30]Guimier A,Gabriel GC,Bajolle F,et al. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates[J]. Nat Genet,2015,47(11):1260-1263.

[31]Yuan ZZ,Fan LL,Jiang ZC,et al. A novel nonsense MMP21 variant causes dextrocardia and congenital heart disease in a Han Chinese patient[J]. Front Cardiovasc Med,2020,7:582350.

[32]Dong W,Kaymakcalan H,Jin SC,et al. Mutation spectrum of congenital heart disease in a consanguineous Turkish population[J]. Mol Genet Genomic Med,2022,10(6):e1944.

[33]Bellchambers HM,Ware SM. ZIC3 in heterotaxy[J]. Adv Exp Med Biol,2018,1046:301-327.

[34]Ware SM,Harutyunyan KG,Belmont JW. Heart defects in X-linked heterotaxy:evidence for a genetic interaction of Zic3 with the nodal signaling pathway[J]. Dev Dyn,2006,235(6):1631-1637.

[35]Soltan HC,Li MD. Hereditary dextrocardia associated with other congenital heart defects:report of a pedigree[J]. Clin Genet,1974,5(1):51-58.

[36]Li AH,Hanchard NA,Azamian M,et al. Genetic architecture of laterality defects revealed by whole exome sequencing[J]. Eur J Hum Genet,2019,27(4):563-573.

[37]Liu H,Giguet-Valard AG,Simonet T,et al. Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy[J]. Hum Mutat,2020,41(12):2167-2178.

[38]Clark E. In vivo characterisation of anks3—A new candidate for ciliopathic disease[D]. Heidelberg,Germany:Ruperto Carola University,2020.

[39]Yakulov TA,Yasunaga T,Ramachandran H,et al. Anks3 interacts with nephronophthisis proteins and is required for normal renal development[J]. Kidney Int,2015,87(6):1191-1200.

[40]Shamseldin HE,Yakulov TA,Hashem A,et al. ANKS3 is mutated in a family with autosomal recessive laterality defect[J]. Hum Genet,2016,135(11):1233-1239.

更新日期/Last Update: 2023-01-31