参考文献/References:
[1] Sehgal K,Khanna S. Gut microbiota:a target for intervention in obesity[J]. Expert Rev Gastroenterol Hepatol,2021,15(10):1169-1179.
[2] GBD 2015 Obesity Collaborators,Afshin A,Forouzanfar MH,et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med,2017,377(1):13-27.
[3] SivamaruthI BS,Kesika P,Suganthy N,et al. A review on role of microbiome in obesity and antiobesity properties of probiotic supplements[J]. Biomed Res Int,2019,2019:3291367.
[4] Cornejo-Pareja I,Mu?oz-Garach A,Clemente-Postigo M,et al. Importance of gut microbiota in obesity[J]. Eur J Clin Nutr,2019,72(suppl 1):26-37.
[5] Rinninella E,Raoul P,Cintoni M,et al. What is the healthy gut microbiota composition? A changing ecosystem across age,environment,diet,and diseases[J]. Microorganisms,2019,7(1):14.
[6] Bik EM. Composition and function of the human-associated microbiota[J]. Nutr Rev,2009,67 suppl 2:S164-S171.
[7] Chow J,Lee SM,Shen Y,et al. Host-bacterial symbiosis in health and disease[J]. Adv Immunol,2010,107:243-274.
[8] Pinart M,D?tsch A,Schlicht K,et al. Gut microbiome composition in obese and non-obese persons:a systematic review and meta-analysis[J]. Nutrients,2021,14(1):12.
[9] Plovier H,Everard A,Druart C,et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nat Med,2017,23(1):107-113.
[10] Gutiérrez-Cuevas J,Sandoval-Rodriguez A,Meza-Rios A,et al. Molecular mechanisms of obesity-linked cardiac dysfunction:an up-date on current knowledge[J]. Cells,2021,10(3):629.
[11] Gasmi A,Mujawdiya PK,Pivina L,et al. Relationship between gut microbiota,gut hyperpermeability and obesity[J]. Curr Med Chem,2021,28(4):827-839.
[12] Clarke SF,Murphy EF,O’Sullivan O,et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut,2014,63(12):1913-1920.
[13] Lee CJ,Sears CL,Maruthur N. Gut microbiome and its role in obesity and insulin resistance[J]. Ann N Y Acad Sci,2020,1461(1):37-52.
[14] Manco M,Putignani L,Bottazzo GF. Gut microbiota,lipopolysaccharides,and innate immunity in the pathogenesis of obesity and cardiovascular risk[J]. Endocr Rev,2010,31(6): 817-844.
[15] Musso G,Gambino R,Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J]. Annu Rev Med,2011,62:361-380.
[16] Delzenne NM,Cani PD. Gut microbiota and the pathogenesis of insulin resistance[J]. Curr Diab Rep,2011,11(3):154-159.
[17] Moszak M,Szulińska M,Bogdański P. You are what you eat—The relationship between diet,microbiota,and metabolic disorders—A review[J]. Nutrients,2020,12(4):1096.
[18] Yoshida K,Shimizugawa T,Ono M,et al. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase[J]. J Lipid Res,2002,43(11):1770-1772.
[19] Aron-wisnewsky J,Warmbrunn MV,Nieuwdorp M,et al. Metabolism and metabolic disorders and the microbiome:the intestinal microbiota associated with obesity,lipid metabolism,and metabolic health-pathophysiology and therapeutic strategies[J]. Gastroenterology,2021,160(2):573-599.
[20] Hardie DG,Ross FA,Hawley SA. AMPK:a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol,2012,13(4):251-262.
[21] B?ckhed F,Manchester JK,Semenkovich CF,et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A,2007,104(3):979-984.
[22] Islam MR,Arthur S,Haynes J,et al. The role of gut microbiota and metabolites in obesity-associated chronic gastrointestinal disorders[J]. Nutrients,2022,14(3):624.
[23] Cani PD,Amar J,Iglesias MA,et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes,2007,56(7):1761-1772.
[24] Cryan JF,O’Riordan KJ,Cowan CSM,et al. The microbiota-gut-brain axis[J]. Physiol Rev,2019,99(4):1877-2013.
[25] Wu Y,He H,Cheng Z,et al. The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis[J]. Curr Protein Pept Sci,2019,20(7):750-758.
[26] Salehi M,Purnell JQ. The role of glucagon-like peptide-1 in energy homeostasis[J]. Metab Syndr Relat Disord,2019,17(4):183-191.
[27] Federico A,Dallio M,Tolone S,et al. Gastrointestinal hormones,intestinal microbiota and metabolic homeostasis in obese patients:effect of bariatric surgery[J]. In Vivo,2016,30(3):321-330.
[28] Fetissov SO. Role of the gut microbiota in host appetite control:bacterial growth to animal feeding behaviour[J]. Nat Rev Endocrinol,2017,13(1):11-25.
[29] Kuang Z,Wang Y,Li Y,et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3[J]. Science,2019,365(6460):1428-1434.
[30] Ye Y,Xu H,Xie Z,et al. Time-restricted feeding reduces the detrimental effects of a high-fat diet,possibly by modulating the circadian rhythm of hepatic lipid metabolism and gut microbiota[J]. Front Nutr,2020,7:596285.
[31] Zeb F,Wu X,Chen L,et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males[J]. Br J Nutr,2020,123(11): 1216-1226.
[32] Joyce SA,MacSharry J,Casey PG,et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut[J]. Proc Natl Acad Sci U S A,2014,111(20):7421-7426.
[33] Parkar SG,Kalsbeek A,Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health[J]. Microorganisms,2019,7(2):41.
[34] Tahara Y,Yamazaki M,Sukigara H,et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue[J]. Sci Rep,2018,8(1):1395.
[35] Beam A,Clinger E,Hao L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients,2021,13(8):2795.
[36] Bouter KE,van Raalte DH,Groen AK,et al. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction[J]. Gastroenterology,2017,152(7):1671-1678.
[37] Li HY,Zhou DD,Gan RY,et al. Effects and mechanisms of probiotics,prebiotics,synbiotics,and postbiotics on metabolic diseases targeting gut microbiota:a narrative review[J]. Nutrients,2021,13(9) :3211.
[38] Depommier C,Everard A,Druart C,et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study[J]. Nat Med,2019,25(7):1096-1103.
[39] Cerdó T,García-Santos JA,G Bermúdez M,et al. The role of probiotics and prebiotics in the prevention and treatment of obesity[J]. Nutrients,2019,11(3):635.
[40] Abenavoli L,Scarpellini E,Colica C,et al. Gut microbiota and obesity:a role for probiotics[J]. Nutrients,2019,11(11):2690.
[41] Geng J,Ni Q,Sun W,et al. The links between gut microbiota and obesity and obesity related diseases[J]. Biomed Pharmacother,2022,147:112678.
[42] Murphy EF,Cotter PD,Hogan A,et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity[J]. Gut,2013,62(2):220-226.
[43] de Groot P,Scheithauer T,Bakker GJ,et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity,energy expenditure and intestinal transit time[J]. Gut,2020,69(3):502-512.
[44] Biazzo M,Deidda G. Fecal microbiota transplantation as new therapeutic avenue for human diseases[J]. J Clin Med,2022,11(14):4119.
[45] Rinott E,Youngster I,Yaskolka Meir A,et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain[J]. Gastroenterology,2021,160(1):158-173.e10.
[46] Trabelsi MS,Daoudi M,Prawitt J,et al. Farnesoid X receptor inhibits glucagon-like
peptide-1 production by enteroendocrine L cells[J]. Nat Commun,2015,6:7629.
[47] Schugar RC,Gliniak CM,Osborn LJ,et al. Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms[J]. Elife,2022,11:e63998.
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(3):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(3):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(3):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[7]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(3):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[8]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(3):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[9]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(3):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
[10]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(3):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]