[1]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
 LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
点击复制

肠道菌群及其代谢物与心律失常关系的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年11期
页码:
1002
栏目:
综述
出版日期:
2022-11-25

文章信息/Info

Title:
The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia
作者:
刘杏利 高中山1 段豪亮 1 赵奕1 马玉兰2
(1.青海大学,青海 西宁 810016;2.青海大学附属医院心内科,青海 西宁 810001)
Author(s):
LIU Xingli 1 GAO Zhongshan 1 DUAN Haoliang 1 ZHAO Yi 1 MA Yulan 2
(1.Qinghai University,Xining 810016,Qinghai,China; 2.Department of Cardiology,Qinghai University Affiliated Hospital,Xining 810001,Qinghai,China)
关键词:
肠道菌群代谢物心律失常
Keywords:
Intestinal floraMetaboliteArrhythmia
DOI:
10.16806/j.cnki.issn.1004-3934.2022.11.009
摘要:
最近,几项涉及动物和人类的研究表明,心律失常(如心房颤动、室性心律失常、窦房结功能障碍)的发生和发展与肠道菌群的失调及其代谢物之间存在显著的联系。肠道菌群生态系统主要是一个虚拟的内分泌器官,在宿主体内相互作用并对分子信号作出反应。肠道与宿主的相互作用涉及几种生物途径,包括胆汁酸。现旨在综述肠道菌群及其代谢物在心房颤动、室性心律失常、窦房结功能障碍的发生和发展中的作用与机制,以及在心律失常防治方面的潜在价值,以加快心律失常患者疾病的转归。
Abstract:
Recently,several studies involving animals and humans have shown that there is a significant relationship between the occurrence and development of arrhythmias(such as atrial fibrillation,ventricular arrhythmia and sinus node dysfunction ) and the imbalance of intestinal flora and its metabolites. The gut microbiota ecosystem is mainly a virtual endocrine organ that interacts in the host body and responds to molecular signals. Gut host interactions involve several biological pathways,including bile acid. This article aims to review the role and mechanism of intestinal flora and its metabolites in the occurrence and development of atrial fibrillation,ventricular arrhythmia and sinus node dysfunction,as well as the potential value in the prevention and treatment of arrhythmias,so as to accelerate the prognosis of patients with arrhythmias

参考文献/References:

[1].Huart J,Leenders J,Taminiau B,et al. Gut microbiota and fecal levels of short-chain fatty acids diffffer upon 24-hour blood pressure levels in men[J]. Hypertension,2019,74(4):1005-1013.
[2].Liu H,Chen X,Hu X,et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome,2019,7(1):68.
[3].Cui X,Ye L,Li J,et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients[J]. Sci Rep,2018,8(1):635.
[4].Tang TWH,Chen HC,Chen CY,et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation,2019,139(5):647-659.
[5].Du Y,Li X,Su C,et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-defificiency mice[J]. Br J Pharmacol,2020,177(8):1754-1772.
[6].Wang SZ,Yu YJ,Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis[J]. Microorganisms,2020,8(4):527.
[7].Khursheed R,Singh SK,Wadhwa S,et al. Treatment strategies against diabetes:success so far and challenges ahead[J]. Eur J Pharmacol,2019,862:172625.
[8].Zuo K,Yin X,Li K,et al. Different types of atrial fibrillation share patterns of gut microbiota dysbiosis[J]. mSphere,2020,5(2):e00071-20.
[9].Wang Z,Klipfell E,Bennett BJ,et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature,2011,472(7341):57-63.
[10].Kang JX,Leaf A. Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes[J]. Eur J Pharmacol,1996,297(1-2):97-106.
[11].Zuo K,Li J,Li K,et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation[J]. Gigascience,2019,8(6):giz058.
[12].Machiels K,Sabino J,Vandermosten L,et al. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC[J]. Gut,2017,66(1):79-88.
[13].Hoffmann TW,Pham HP,Bridonneau C,et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice[J]. ISME J,2016,10(2):460-477.
[14].Zheng JX,Wu Y,Lin ZW,et al. Characteristics of and virulence factors associated with biofilm formation in clinical Enterococcus faecalis isolates in China[J]. Front Microbiol ,2017,8:2338.
[15].Riviere A,Gagnon M,Weckx S,et al. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides[J]. Appl Environ Microbiol,2015,81(22):7767-7781.
[16].Matson V,Fessler J,Bao R,et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science,2018,359(6371):104-108.
[17].Nagai F,Morotomi M,Watanabe Y,et al. Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces[J]. Int J Syst Evol Microbiol,2010,60(Pt 6):1296-1302.
[18].Kharbanda RK,van der Does WFB,van Staveren LN,et al. Vagus nerve stimulation and atrial fibrillation:revealing the paradox[J]. Neuromodulation,2022,25(3):356-365.
[19].Yu L,Meng G,Huang B,et al. A potential relationship between gut microbes and atrial fibrillation:trimethylamine N-oxide,a gut microbe-derived metabolite,facilitates the progression of atrial fibrillation[J]. Int J Cardiol,2018,255:92-98.
[20].Linz D,Gawako M,Sanders P,et al. Does gut microbiota affect atrial rhythm? Causalities and speculations[J]. Eur Heart J,2021,42(35):3521-3525.
[21].Zuo K,Zhang J,Fang C,et al. Metagenomic data-analysis reveals enrichment of lipopolysaccharide synthesis in the gut microbiota of atrial fibrillation patients[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2022,50(3):249-256.
[22].Yoshida N,Yamashita T,Kishino S,et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases[J]. Sci Rep,2020,10(1):13009.
[23].Zhang Y,Zhang S,Li B,et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res,2022,118(3):785-797.
[24].Hu HJ,Wang XH,Liu Y,et al. Hydrogen sulfide ameliorates angiotensinⅡ-induced atrial fibrosis progression to atrial fibrillation through inhibition of the Warburg effect and endoplasmic reticulum stress[J]. Front Pharmacol,2021,12:690371.
[25].Gao H,Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease[J]. Life Sci,2017,185:23-29.
[26]. Aronov PA,Luo FJ,Plummer NS,et al. Colonic contribution to uremic solutes[J]. J Am Soc Nephrol,2011,22(9):1769-1776.
[27].Koike H,Morita T,Tatebe J,et al. The difference in the changes of indoxyl sulfate after catheter ablation among atrial fibrillation patients with and without kidney dysfunction[J]. Sci Rep,2020,10(1):513.
[28].Chen WT,Chen YC,Hsieh MH,et al. The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J]. J Cardiovasc Electrophysiol,2015,26(2):203-210.
[29].Mishima RS,Elliott AD,Sanders P,et al. Microbiome and atrial fibrillation[J]. Int J Cardiol,2018,255:103-104.
[30].Bhar-Amato J,Davies W,Agarwal S. Ventricular arrhythmia after acute myocardial infarction:‘the perfect storm’[J]. Arrhythm Electrophysiol Rev,2017,6(3):134-139.
[31]. Bravo JA,Forsythe P,Chew MV,et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci U S A,2011,108(38):16050-16055.
[32].Goehler LE,Park SM,Opitz N,et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard:possible anatomical substrates for viscerosensory modulation of exploratory behavior[J]. Brain Behav Immun,2008,22(3):354-366.
[33].Perez-Burgos A,Wang B,Mao YK,et al. Psychoactive bacteria Lactobacillus rhamnosus(JB-1) elicits rapid frequency facilitation in vagal afferents[J]. Am J Physiol Gastrointest Liver Physiol,2013,304(2):G211-G220.
[34].Qi L,Hu H,Wang Y,et al. New insights into the central sympathetic hyperactivity post-myocardial infarction:roles of METTL3-mediated m6A methylation[J]. J Cell Mol Med,2022,26(4):1264-1280.
[35].Meng G,Zhou X,Wang M,et al. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways[J]. EBioMedicine,2019,44:656-664.
[36].Oliveras T,Lázaro I,Rueda F,et al. Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation[J]. Sci Rep,2022,12(1):4377.
[37].Jiang X,Yang F,Ou D,et al. MCC950 ameliorates ventricular arrhythmia vulnerability induced by heart failure[J]. Bioengineered,2022,13(4):8593-8604.
[38].Hawks MK,Paul MLB,Malu OO. Sinus node dysfunction[J]. Am Fam Physician,2021,104(2):179-185.
[39].Derouiche F,B?le-Feysot C,Na?mi D,et al. Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta[J]. Biochem Biophys Res Commun,2014,452(3):740-745.
[40].Ganguly P,Alam SF. Role of homocysteine in the development of cardiovascular disease[J]. Nutr J,2015,14:6.
[41].Soni CV,Tyagi SC,Todnem ND,et al. Hyperhomocysteinemia alters sinoatrial and atrioventricular nodal function:role of magnesium in attenuating these effects[J]. Cell Biochem Biophys,2016,74(1):59-65.
[42].Laha A,Majumder A,Singh M,et al. Connecting homocysteine and obesity through pyroptosis,gut microbiome,epigenetics,peroxisome proliferator-activated receptor γ,and zinc finger protein 407[J]. Can J Physiol Pharmacol,2018,96(10):971-976.
[43].Jin M,Qian Z,Yin J,et al. The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med,2019,23(4):2343-2350.
[44].Kim TT,Parajuli N,Sung MM,et al. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice[J]. Am J Physiol Endocrinol Metab,2018,315(4):E511-E519.

相似文献/References:

[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
 YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(11):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
 ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(11):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
 LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(11):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(11):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
 ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(11):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[7]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
 LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(11):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[8]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
 JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(11):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[9]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
 LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(11):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
[10]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
 UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(11):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]

更新日期/Last Update: 2023-01-31