[1]秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖.人工智能在心房颤动预测中的价值[J].心血管病学进展,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
 QIN Dimao,LI Mengyi,WU Shuang,et al.Artificial Intelligence for Predicting Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
点击复制

人工智能在心房颤动预测中的价值()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
874
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Artificial Intelligence for Predicting Atrial Fibrillation
作者:
秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖
?西南交通大学附属医院 成都市心血管病研究所心电血压研究室,四川 成都 610041)
Author(s):
QIN Dimao LI Mengyi WU Shuang DENG Qi YAO Yao LIU Yingjie ZHENG Ying
(Affiliated Hospital of Southwest Jiaotong University Chengdu Institute of Cardiovascular Diseases ECG Room, Chengdu 610031 ,Sichuan,China)
关键词:
人工智能机器学习心房颤动
Keywords:
Artificial intelligence Machine learning Atrial fibrillation
DOI:
10.16806/j.issn.1004-3934.2022.10.003
摘要:
心房颤动是临床上最常见的心律失常之一,与心力衰竭及脑卒中密切相关。然而,目前的辅助检查对心房颤动的检出率不尽人意,目前,人工智能已广泛运用于临床医学,在心房颤动的预测中有一定的价值。现主要阐述人工智能对于预测心房颤动的新进展。
Abstract:
Atrial fibrillation is one of the most common arrhythmias in clinic,which is closely related to heart failure and stroke. However,the current auxiliary examination is not satisfactory for the detection rate of atrial fibrillation. At present,artificial intelligence has been widely used in clinical medicine and has a certain value in the prediction of atrial fibrillation. This paper mainly describes the new progress of artificial intelligence in predicting atrial fibrillation

参考文献/References:

[1] Karthikeyan A,Priyakumar UD. Artificial intelligence:machine learning for chemical sciences[J]. J Chem Sci (Bangalore),2022,134(1):2.

[2] Westcott RJ,Tcheng JE. Artificial intelligence and machine learning in cardiology[J]. JACC Cardiovasc Interv,2019,12(14):1312-1314.

[3] Krittanawong C,Virk HUH,Bangalore S,et al. Machine learning prediction in cardiovascular diseases:a meta-analysis[J]. Sci Rep,2020,10(1):16057.

[4] Zhao Y,Wood EP,Mirin N,et al. Determinants in machine learning cardiovascular disease prediction models:a systematic review[J]. Am J Prev Med,2021,61(4):596-605.

[5] Baman JR,Passman RS. Atrial Fibrillation[J]. JAMA,2021,325(21):2218.

[6] de Vos CB,Weijs B,Crijns HJ,et al. Atrial tissue Doppler imaging for prediction of new-onset atrial fibrillation[J]. Heart,2009,95(10):835-840.

[7] Halasz G. Predicting the risk of atrial fibrillation:is the machine learning the answer?[J]. Eur J Prev Cardiol,2021,28(6):596-597.

[8] Sekelj S,Sandler B,Johnston E,et al. Detecting undiagnosed atrial fibrillation in UK primary care:validation of a machine learning prediction algorithm in a retrospective cohort study[J]. Eur J Prev Cardiol,2021,28(6):598-605.

[9] 何康,武忠.人工智能在心房颤动预测中的新进展[J].中国胸心外科临床杂志,2020,27(12):1472-1478.

[10] Tseng AS,Noseworthy PA. Prediction of atrial fibrillation using machine learning:a review[J]. Front Physiol,2021,12:752317.

[11] Tiwari P,Colborn KL,Smith DE,et al. Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation[J]. JAMA Netw Open,2020,3(1):e1919396.

[12] Thong T,McNames J,Aboy M,et al. Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes[J]. IEEE Trans Biomed Eng,2004,51(4):561-569.

[13] Nadarajah R,Wu J,Frangi AF,et al. What is next for screening for undiagnosed atrial fibrillation? Artificial intelligence may hold the key[J]. Eur Heart J Qual Care Clin Outcomes,2022,8(4):391-397.

[14] Yoshizawa T,Niwano S,Niwano H,et al. Prediction of new onset atrial fibrillation through P wave analysis in 12 lead ECG[J]. Int Heart J,2014,55(5):422-427.

[15] Im SI,Park DH,Kim BJ,et al. Clinical and electrocardiographic characteristics for prediction of new-onset atrial fibrillation in asymptomatic patients with atrial premature complexes[J]. Int J Cardiol Heart Vasc,2018,19:70-74.

[16] Szilágyi J,Walters TE,Marcus GM,et al. Surface ECG and intracardiac spectral measures predict atrial fibrillation recurrence after catheter ablation[J]. J Cardiovasc Electrophysiol,2018,29(10):1371-1378.

[17] Ebrahimzadeh E,Kalantari M,Joulani M,et al. Prediction of paroxysmal atrial fibrillation:a machine learning based approach using combined feature vector and mixture of expert classification on HRV signal[J]. Comput Methods Programs Biomed,2018,165:53-67.

[18] Liu Y,Bai F,Tang Z,et al. Integrative transcriptomic,proteomic,and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease[J]. BMC Cardiovasc Disord,2021,21(1):52.

[19] Park JW,Kwon OS,Shim J,et al. Machine learning-predicted progression to permanent atrial fibrillation after catheter ablation[J]. Front Cardiovasc Med,2022 9:813914.

[20] Lee JH,Kwon OS,Shim J,et al. Left atrial wall stress and the long-term outcome of catheter ablation of atrial fibrillation:an artificial intelligence-based prediction of atrial wall stress[J]. Front Physiol,2021,12:686507.

相似文献/References:

[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[2]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[3]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
 WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(10):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[4]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
 LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(10):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[5]艾克力亚尔·艾尼瓦尔 马翔.机器学习CNN模型在心血管疾病诊疗中的临床应用及研究进展[J].心血管病学进展,2021,(6):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
 Aikeliyaer.ainiwaerMA xiang.Application of Convolutional Neural Network Model of Machine Learning for the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(10):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
[6]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
 WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(10):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[7]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(10):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[8]陈忠秀 李娅姣 李春梅 李晨.无导丝虚拟血流储备分数技术在稳定性冠心病介入治疗中的指导价值[J].心血管病学进展,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
 CHEN Zhongxiu,LI Yajiao,LI Chunmei,et al.The Value of Wireless Virtual Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention in Stable Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
[9]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(10):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[10]中国智慧化血管健康全生命周期数字管理分级诊疗实践指南编写组 中国医药教育协会血管医学专业委员会 中国研究型医院学会移动医疗专业委员会 北京大学医学部血管健康研究中心 分子心血管学教育部重点实验室(北京大学).中国智慧化血管健康全生命周期数字管理分级诊疗实践指南(2022第一次报告)[J].心血管病学进展,2023,(1):71.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.017]
 China Medicine Education Association Vascular Medicine Professional Committee,et al..Digital Hierarchic Healthcare Clinical Practice Guideline for Intellectualized Whole-life Vascular Health Management in China[J].Advances in Cardiovascular Diseases,2023,(10):71.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.017]
[11]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(10):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[12]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
 HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(10):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[13]屈展 刘凯.人工智能技术在高血压诊疗中的应用进展[J].心血管病学进展,2023,(1):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 QU Zhan,LIU Kai.Applications of Artificial Intelligence for Hypertension Management[J].Advances in Cardiovascular Diseases,2023,(10):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]

更新日期/Last Update: 2022-12-26