[1]刘春伟 胡越成 张敬霞 王林 丛洪良.从腔内影像学进展探讨冠状动脉易损斑块的临床意义[J].心血管病学进展,2022,(10):877.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.004]
 LIU Chunwei,HU Yuecheng,ZHANG Jingxia,et al.The Vulnerable Plaque:Intracoronary Imaging and Clinical Value[J].Advances in Cardiovascular Diseases,2022,(10):877.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.004]
点击复制

从腔内影像学进展探讨冠状动脉易损斑块的临床意义()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
877
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
The Vulnerable Plaque:Intracoronary Imaging and Clinical Value
作者:
刘春伟 胡越成 张敬霞 王林 丛洪良
(天津市胸科医院心内科,天津 300222)
Author(s):
LIU ChunweiHU YuechengZHANG JingxiaWANG LinCONG Hongliang
?Department of Cardiology,Tianjin Chest Hospital,Tianjin300222,China)
关键词:
易损斑块薄纤维帽粥样硬化斑块血管内超声近红外线成像光学相干断层成像内皮剪切应力斑块侵蚀
Keywords:
Vulnerable plaqueThin-cap fibroatheromaIntravascular ultrasoundNear-infrared?spectroscopyOptical coherence tomographyEndothelial shear stressPlaque erosion
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.004
摘要:
近年来腔内影像学技术突飞猛进,为冠状动脉粥样硬化斑块的病理生理演变提供了丰富的信息。既往研究集中于早期检测识别冠状动脉易损斑块,但这些易损斑块对临床事件的阳性预测值很低。现总结近年来在冠状动脉易损斑块领域内的大量临床相关研究,阐述易损斑块对临床事件的预测价值及其在冠状动脉粥样硬化疾病自然进程中的意义。
Abstract:
Intracoronary imaging has been developed greatly in recent years, it provided abundant information about the pathophysiology and evolution of coronary atherosclerotic plaque . Previous studies focused on the early identification of vulnerable atherosclerotic plaque ,yet the positive predictive value of imaging precursors of the vulnerable plaque remains too low for clinical relevance. This review summarizes the numerous clinical studies on the vulnerable plaque in recent years ,and discusses its predictive value of adverse events and its role in the natural history of coronary atherosclerotic disease

参考文献/References:


[1] Tomaniak M,KatagirI Y,Modolo R,et al. Vulnerable plaques and patients:state-of-the-art[J]. Eur Heart J,2020,41(31):2997-3004.

[2] Johnson TW,R?ber L,di Mario C,et al. Clinical use of intracoronary imaging. Part 2:acute coronary syndromes,ambiguous coronary angiography findings,and guiding interventional decision-making:an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J,2019,40(31):2566-2584.

[3] Stone GW,Maehara A,Lansky AJ,et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med,2011,364(3):226-235.

[4] Calvert PA,Obaid DR,O’Sullivan M,et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease:the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study[J]. JACC Cardiovasc Imaging,2011,4(8):894-901.

[5] Schuurman AS,Vroegindewey MM,Kardys I,et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease[J]. J Am Coll Cardiol,2018,72(17):2003-2011.

[6] Waksman R,Di Mario C,Torguson R,et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging:a prospective,cohort study[J]. Lancet,2019,394(10209):1629-1637.

[7] Erlinge D,Maehara A,Ben-Yehuda O,et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT Ⅱ):a prospective natural history study[J]. Lancet,2021,397(10278):985-995.

[8] 中华医学会心血管病学分会介入心脏病学组,心血管病影像学组. 光学相干断层成像技术在冠心病介入诊疗领域的应用中国专家建议[J]. 中华心血管病杂志,2017,45(1):5-12.

[9] Prati F,Romagnoli E,Gatto L,et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome:the CLIMA study[J]. Eur Heart J,2020,41(3):383-391.

[10] Gnanadesigan M,Kameyama T,Karanasos A,et al. Automated characterisation of lipid core plaques in vivo by quantitative optical coherence tomography tissue type imaging[J]. EuroIntervention,2016,12(12):1490-1497.

[11] Kumar A,Thompson EW,Lefieux A,et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction[J]. J Am Coll Cardiol,2018,72(16):1926-1935.

[12] Lee S,Lee MW,Cho HS,et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels[J]. Circ Cardiovasc Interv,2014,7(4):560-569.

[13] Verjans JW,Osborn EA,Ughi GJ,et al. Targeted near-infrared fluorescence imaging of atherosclerosis:clinical and intracoronary evaluation of indocyanine green[J]. JACC Cardiovasc Imaging,2016,9(9):1087-1095.

[14] Ikeda H,Ishii A,Sano K,et al. Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green[J]. Atherosclerosis,2018,275:1-10.

[15] Ughi GJ,Wang H,Gerbaud E,et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J]. JACC Cardiovasc Imaging,2016,9(11):1304-1314.

[16] Htun NM,Chen YC,Lim B,et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques[J]. Nat Commun,2017,8(1):75.

[17] Bec J,Vela D,Phipps JE,et al. Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime[J]. JACC Cardiovasc Imaging,2021,14(9):1832-1842.

[18] Kim S,Nam HS,Lee MW,et al. Comprehensive assessment of high-risk plaques by dual-modal imaging catheter in coronary artery[J]. JACC Basic Transl Sci,2021,6(12):948-960.

[19] Bourantas CV,Jaffer FA,Gijsen FJ,et al. Hybrid intravascular imaging:recent advances,technical considerations,and current applications in the study of plaque pathophysiology[J]. Eur Heart J,2017,38(6):400-412.

[20] Xie Z,Shu C,Yang D,et al. In vivo intravascular photoacoustic imaging at a high speed of 100 frames per second[J]. Biomed Opt Express,2020,11(11):6721-6731.

[21] Lin L,Xie Z,Xu M,et al. IVUS\IVPA hybrid intravascular molecular imaging of angiogenesis in atherosclerotic plaques via RGDfk peptide-targeted nanoprobes[J]. Photoacoustics,2021,22:100262.

[22] Tian J,Dauerman H,Toma C,et al. Prevalence and characteristics of TCFA and degree of coronary artery stenosis:an OCT,IVUS,and angiographic study[J]. J Am Coll Cardiol,2014,64(7):672-680.

[23] Ahmadi A,Argulian E,Leipsic J,et al. From subclinical atherosclerosis to plaque progression and acute coronary events:JACC state-of-the-art review[J]. J Am Coll Cardiol,2019,74(12):1608-1617.

[24] Costopoulos C,Timmins LH,Huang Y,et al. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression,regression,and changes in composition[J]. Eur Heart J,2019,40(18):1411-1422.

[25] Araki M,Soeda T,Kim HO,et al. Spatial distribution of vulnerable plaques:comprehensive in vivo coronary plaque mapping[J]. JACC Cardiovasc Imaging,2020,13(9):1989-1999.

[26] Yamamoto E,Thondapu V,Poon E,et al. Endothelial shear stress and plaque erosion:a computational fluid dynamics and optical coherence tomography study[J]. JACC Cardiovasc Imaging,2019,12(2):374-375.

[27] Bourantas CV,Zanchin T,Torii R,et al. Shear stress estimated by quantitative coronary angiography predicts plaques prone to progress and cause events[J]. JACC Cardiovasc Imaging,2020,13(10):2206-2219.

[28] Thondapu V,Mamon C,Poon EKW,et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion[J]. Cardiovasc Res,2021,117(8):1974-1985.

[29] Narula J,Nakano M,Virmani R,et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques[J]. J Am Coll Cardiol,2013,61(10):1041-1051.

[30] Tian J,Ren X,Vergallo R,et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma:a combined optical coherence tomography and intravascular ultrasound study[J]. J Am Coll Cardiol,2014,63(21):2209-2216.

[31] Fujii K,Kobayashi Y,Mintz GS,et al. Intravascular ultrasound assessment of ulcerated ruptured plaques:a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes[J]. Circulation,2003,108(20):2473-2478.

[32] Kubo T,Maehara A,Mintz GS,et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization[J]. J Am Coll Cardiol,2010,55(15):1590-1597.

[33] R?ber L,Koskinas KC,Yamaji K,et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4):a serial optical coherence tomography study[J]. JACC Cardiovasc Imaging,2019,12(8Pt1):1518-1528.

[34] Vergallo R,Crea F. Atherosclerotic plaque healing[J]. N Engl J Med,2020,383(9):846-857.

[35] Wang C,Hu S,Wu J,et al. Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina:an in vivo OCT and IVUS study[J]. EuroIntervention,2019,15(9):e771-e778.

[36] Lee SE,Sung JM,Andreini D,et al. Differences in progression to obstructive lesions per high-risk plaque features and plaque volumes with CCTA[J]. JACC Cardiovasc Imaging,2020,13(6):1409-1417.

[37] Mortensen MB,Dzaye O,Steffensen FH,et al. Impact of plaque burden versus stenosis on ischemic events in patients with coronary atherosclerosis[J]. J Am Coll Cardiol,2020,76(24):2803-2813.

[38] Maron DJ,Hochman JS,Reynolds HR,et al. Initial invasive or conservative strategy for stable coronary disease[J]. N Engl J Med,2020,382(15):1395-1407.

[39] Partida RA,Libby P,Crea F,et al. Plaque erosion:a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes[J]. Eur Heart J,2018,39(22):2070-2076.

[40] Kolte D,Libby P,Jang IK. New insights into plaque erosion as a mechanism of acute coronary syndromes[J]. JAMA,2021,325(11):1043-1044.

[41] Chandran S,Watkins J,Abdul-Aziz A,et al. Inflammatory differences in plaque erosion and rupture in patients with ST-segment elevation myocardial infarction[J]. J Am Heart Assoc,2017,6(5):e005868.

[42] Cao M,Zhao L,Ren X,et al. Pancoronary plaque characteristics in STEMI caused by culprit plaque erosion versus rupture:3-vessel OCT study[J]. JACC Cardiovasc Imaging,2021,14(6):1235-1245.

[43] Raber L,Taniwaki M,Zaugg S,et al. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4):a serial intravascular ultrasonography study[J]. Eur Heart J,2015,36(8):490-500.

[44] Ota H,Omori H,Kawasaki M,et al. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques:a near-infrared spectroscopy study[J]. Eur Heart J Cardiovasc Imaging,2022,23(2):217-228.

[45] Stone GW,Maehara A,Ali ZA,et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque[J]. J Am Coll Cardiol,2020,76(20):2289-2301.

[46] Kim U,Leipsic JA,Sellers SL,et al. Natural history of diabetic coronary atherosclerosis by quantitative measurement of serial coronary computed tomographic angiography:results of the PARADIGM study[J]. JACC Cardiovasc Imaging,2018,11(10):1461-1471.

[47] KedhI E,Berta B,Roleder T,et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve:the COMBINE OCT-FFR trial[J]. Eur Heart J,2021,42(45):4671-4679.

相似文献/References:

[1]贺佳琪 王琳鑫 曹阳 田野.( 动脉粥样硬化斑块内出血影像学检查技术进展[J].心血管病学进展,2020,(11):1148.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2020.11.000]
 HE Jiaqi,WANG Linxin,CAO Yang,et al.Atherosclerosis Intraplaque Hemorrhage[J].Advances in Cardiovascular Diseases,2020,(10):1148.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2020.11.000]

更新日期/Last Update: 2022-12-26