[1]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795-798.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(9):795-798.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
点击复制

糖尿病心肌病治疗策略的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年9期
页码:
795-798
栏目:
出版日期:
2022-09-25

文章信息/Info

Title:
Treatment Strategies for Diabetic Cardiomyopathy
作者:
李艳鹏 马依彤
(新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐 830054)
Author(s):
LI YanpengMA Yitong
(Heart Center of The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,Xinjiang,China)
关键词:
糖尿病心肌病信号通路靶向治疗
Keywords:
Diabetic cardiomyopathySignal pathwayTargeted therapy
DOI:
10.16806/j.cnki.issn.1004-3934.2022.09.007
摘要:
糖尿病心肌病(DCM)是一种以心肌细胞肥大、凋亡和纤维化的进展为主要特征的特殊心肌病,表现为心肌结构和功能的异常。与DCM潜在的病理生理变化相关的分子机制包括丝裂原活化蛋白激酶、过氧化物酶体增殖物激活受体、5型磷酸二酯酶、核转录因子红系2相关因子、氧连接的N-乙酰葡糖胺、蛋白激酶C、小分子核糖核酸和外泌体通路的异常等,这些信号通路有望作为治疗的潜在靶点。现对DCM在分子通路方面的机制及潜在治疗策略的最新进展进行综述,以期为DCM的治疗提供一定的指导。
Abstract:
Diabetic cardiomyopathy(DCM) is a special cardiomyopathy characterized by hypertrophy,apoptosis and the development of fibrosis,which is characterized by abnormal myocardial structure and function. Molecular mechanisms associated with potential pathophysiological changes in DCM include abnormalities of AMPK,PPAR,PDE5,Nrf2,O-GlcNAc,PKC ,microRNA and exosome pathways,which are expected to serve as potential therapeutic targets. This article reviews the latest progress of molecular pathways and potential therapeutic strategies in DCM,in order to provide some guidance for the treatment of DCM.

参考文献/References:

[1] Lin X,Xu Y,Pan X,et al. Global,regional,and national burden and trend of diabetes in 195 countries and territories:an analysis from 1990 to 2025[J]. Sci Rep,2020,10(1):14790.

[2] Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.

[3] Seferovi? PM,Coats AJS,Ponikowski P,et al. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure[J]. Eur J Heart Fail,2020,22(2):196-213.

[4] Grubi? Rotkvi ? P,Planini ? Z,Liberati Pr ?o AM,et al. The mystery of diabetic cardiomyopathy:from early concepts and underlying mechanisms to novel therapeutic possibilities[J]. Int J Mol Sci,2021,22(11):5973.

[5] Zinman B,Lachin JM,Inzucchi SE. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2016,374(11):1094.

[6] Kosiborod MN,Jhund PS,Docherty KF,et al. Effects of dapagliflozin on symptoms,function,and quality of life in patients with heart failure and reduced ejection fraction:results from the DAPA-HF trial[J]. Circulation,2020,141(2):90-99.

[7] Fukuta H,Goto T,Wakami K,et al. Effects of exercise training on cardiac function,exercise capacity,and quality of life in heart failure with preserved ejection fraction:a meta-analysis of randomized controlled trials[J]. Heart Fail Rev,2019,24(4):535-547.

[8] Ritchie RH,Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res,2020,126(11):1501-1525.

[9] Zuo G,Ren X,Qian X,et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy[J]. J Cell Physiol,2019,234(2):1925-1936.

[10] Sanit J,Prompunt E,Adulyaritthikul P,et al. Combination of metformin and p38 MAPK inhibitor,SB203580,reduced myocardial ischemia/reperfusion injury in non-obese type 2 diabetic Goto-Kakizaki rats[J]. Exp Ther Med,2019,18(3):1701-1714.

[11] Oh CC,Lee J,D’Souza K,et al. Activator protein-1 and caspase 8 mediate p38 MAPK-dependent cardiomyocyte apoptosis induced by palmitic acid[J]. Apoptosis,2019,24(5-6):395-403.

[12] Yin L,Fang Y,Song T,et al. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway[J]. J Cell Mol Med,2019,23(4):2558-2567.

[13] Mátyás C,N émeth BT,Oláh A,et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes[J]. Eur J Heart Fail,2017,19(3):326-336.

[14] Koka S,Das A,Salloum FN,et al. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice[J]. Free Radic Biol Med,2013,60:80-88.

[15] Zhang X,Pan L,Yang K,et al. H3 relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis,fibrosis and inflammation[J]. Cell Physiol Biochem,2017,43(4):1311-1324.

[16] Priksz D,Bombicz M,Varga B,et al. Upregulation of myocardial and vascular phosphodiesterase 9A in a model of atherosclerotic cardiovascular disease[J]. Int J Mol Sci,2018,19(10):2882.

[17] Zou MH,Xie Z. Regulation of interplay between autophagy and apoptosis in the diabetic heart:new role of AMPK[J]. Autophagy,2013,9(4):624-625.

[18] Abdel-Hamid AAM,Firgany AEL. Favorable outcomes of metformin on coronary microvasculature in experimental diabetic cardiomyopathy[J]. J Mol Histol,2018,49(6):639-649.

[19] Jia G,Demarco VG,Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3):144-153.

[20] Lee TI,Kao YH,Chen YC,et al. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy[J]. Diabetes Res Clin Pract,2013,100(3):330-339.

[21] Leone TC,Weinheimer CJ,Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha(PPARalpha) in the cellular fasting response:the PPARalpha-null mouse as a model of fatty acid oxidation disorders[J]. Proc Natl Acad Sci U S A,1999,96(13):7473-7478.

[22] Young ME,Patil S,Ying J,et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor(alpha) in the adult rodent heart[J]. FASEB J,2001,15(3):833-845.

[23] Marsh SA,Collins HE,Chatham JC. Protein O-GlcNAcylation and cardiovascular (patho)physiology[J]. J Biol Chem,2014,289(50):34449-34456.

[24] Yokoe S,Asahi M,Takeda T,et al. Inhibition of phospholamban phosphorylation by O-GlcNAcylation:implications for diabetic cardiomyopathy[J]. Glycobiology,2010,20(10):1217-1226.

[25] Joubert M,Jagu B,Montaigne D,et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model[J]. Diabetes,2017,66(4):1030-1040.

[26] Ducheix S,Magré J,Cariou B,et al. Chronic O-GlcNAcylation and diabetic cardiomyopathy:the bitterness of glucose[J]. Front Endocrinol(Lausanne),2018,9:642.

[27] Mariappan N,Elks CM,Sriramula S,et al. NF-kappa B-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in typeⅡ diabetes[J]. Cardiovasc Res,2010,85(3):473-483.

[28] Wang G,Song X,Zhao L,et al. Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity[J]. Biomed Res Int,2018,2018:2150218.

[29] Zang H,Wu W,Qi L,et al. Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice[J]. Diabetes,2020,69(12):2720-2734.

[30] Liao HH,Zhu JX,Feng H,et al. Corrigendum "myricetin possesses potential protective effects on diabetic cardiomyopathy through inhibiting IκBα/NFκB and enhancing Nrf2/HO-1"[J]. Oxid Med Cell Longev,2021,2021:9812928.

[31] Guo Y,Shen L. Overexpression of NRF2 is correlated with prognoses of patients with malignancies:a meta-analysis[J]. Thorac Cancer,2017,8(6):558-564.

[32] Diao X,Shen E,Wang X,et al. Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice[J]. Mol Med Rep,2011,4(4):633-640.

[33] Nandi SS,Mishra PK. Targeting miRNA for therapy of juvenile and adult diabetic cardiomyopathy[J]. Adv Exp Med Biol,2018,1056:47-59.

[34] Mittal A,Garg R,Bahl A,et al. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy[J]. Front Cardiovasc Med,2021,8:725532.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(9):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(9):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(9):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]向杰 刘明鑫 黄从新.STAT3信号通路在心房颤动中的机制研究[J].心血管病学进展,2020,(1):22.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.007]
 XIANG JieLIU MingxinHUANG Congxin.Mechanism of STAT3 Signaling Pathway in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(9):22.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.007]
[5]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(9):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[6]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(9):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(9):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(9):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[9]乔晓博,罗倩文,赵鹏,等.橘皮素通过抑制ERK1/2信号通路干预小鼠腹主动脉瘤的进展[J].心血管病学进展,2021,(6):572.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.022]
 via Inhibiting ERK / Signaling Pathway.Tangeretin Attenuate s Mouse Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2021,(9):572.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.022]
[10]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(9):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]

备注/Memo

备注/Memo:
收稿日期: 2022-03-11 基金项目 新疆维吾尔自治区重点实验室开放课题( 2020D04008)
更新日期/Last Update: 2022-10-21