参考文献/References:
[1] Lin X,Xu Y,Pan X,et al. Global,regional,and national burden and trend of diabetes in 195 countries and territories:an analysis from 1990 to 2025[J]. Sci Rep,2020,10(1):14790.
[2] Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[3] Seferovi? PM,Coats AJS,Ponikowski P,et al. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure[J]. Eur J Heart Fail,2020,22(2):196-213.
[4] Grubi? Rotkvi ? P,Planini ? Z,Liberati Pr ?o AM,et al. The mystery of diabetic cardiomyopathy:from early concepts and underlying mechanisms to novel therapeutic possibilities[J]. Int J Mol Sci,2021,22(11):5973.
[5] Zinman B,Lachin JM,Inzucchi SE. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2016,374(11):1094.
[6] Kosiborod MN,Jhund PS,Docherty KF,et al. Effects of dapagliflozin on symptoms,function,and quality of life in patients with heart failure and reduced ejection fraction:results from the DAPA-HF trial[J]. Circulation,2020,141(2):90-99.
[7] Fukuta H,Goto T,Wakami K,et al. Effects of exercise training on cardiac function,exercise capacity,and quality of life in heart failure with preserved ejection fraction:a meta-analysis of randomized controlled trials[J]. Heart Fail Rev,2019,24(4):535-547.
[8] Ritchie RH,Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res,2020,126(11):1501-1525.
[9] Zuo G,Ren X,Qian X,et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy[J]. J Cell Physiol,2019,234(2):1925-1936.
[10] Sanit J,Prompunt E,Adulyaritthikul P,et al. Combination of metformin and p38 MAPK inhibitor,SB203580,reduced myocardial ischemia/reperfusion injury in non-obese type 2 diabetic Goto-Kakizaki rats[J]. Exp Ther Med,2019,18(3):1701-1714.
[11] Oh CC,Lee J,D’Souza K,et al. Activator protein-1 and caspase 8 mediate p38 MAPK-dependent cardiomyocyte apoptosis induced by palmitic acid[J]. Apoptosis,2019,24(5-6):395-403.
[12] Yin L,Fang Y,Song T,et al. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway[J]. J Cell Mol Med,2019,23(4):2558-2567.
[13] Mátyás C,N émeth BT,Oláh A,et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes[J]. Eur J Heart Fail,2017,19(3):326-336.
[14] Koka S,Das A,Salloum FN,et al. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice[J]. Free Radic Biol Med,2013,60:80-88.
[15] Zhang X,Pan L,Yang K,et al. H3 relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis,fibrosis and inflammation[J]. Cell Physiol Biochem,2017,43(4):1311-1324.
[16] Priksz D,Bombicz M,Varga B,et al. Upregulation of myocardial and vascular phosphodiesterase 9A in a model of atherosclerotic cardiovascular disease[J]. Int J Mol Sci,2018,19(10):2882.
[17] Zou MH,Xie Z. Regulation of interplay between autophagy and apoptosis in the diabetic heart:new role of AMPK[J]. Autophagy,2013,9(4):624-625.
[18] Abdel-Hamid AAM,Firgany AEL. Favorable outcomes of metformin on coronary microvasculature in experimental diabetic cardiomyopathy[J]. J Mol Histol,2018,49(6):639-649.
[19] Jia G,Demarco VG,Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3):144-153.
[20] Lee TI,Kao YH,Chen YC,et al. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy[J]. Diabetes Res Clin Pract,2013,100(3):330-339.
[21] Leone TC,Weinheimer CJ,Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha(PPARalpha) in the cellular fasting response:the PPARalpha-null mouse as a model of fatty acid oxidation disorders[J]. Proc Natl Acad Sci U S A,1999,96(13):7473-7478.
[22] Young ME,Patil S,Ying J,et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor(alpha) in the adult rodent heart[J]. FASEB J,2001,15(3):833-845.
[23] Marsh SA,Collins HE,Chatham JC. Protein O-GlcNAcylation and cardiovascular (patho)physiology[J]. J Biol Chem,2014,289(50):34449-34456.
[24] Yokoe S,Asahi M,Takeda T,et al. Inhibition of phospholamban phosphorylation by O-GlcNAcylation:implications for diabetic cardiomyopathy[J]. Glycobiology,2010,20(10):1217-1226.
[25] Joubert M,Jagu B,Montaigne D,et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model[J]. Diabetes,2017,66(4):1030-1040.
[26] Ducheix S,Magré J,Cariou B,et al. Chronic O-GlcNAcylation and diabetic cardiomyopathy:the bitterness of glucose[J]. Front Endocrinol(Lausanne),2018,9:642.
[27] Mariappan N,Elks CM,Sriramula S,et al. NF-kappa B-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in typeⅡ diabetes[J]. Cardiovasc Res,2010,85(3):473-483.
[28] Wang G,Song X,Zhao L,et al. Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity[J]. Biomed Res Int,2018,2018:2150218.
[29] Zang H,Wu W,Qi L,et al. Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice[J]. Diabetes,2020,69(12):2720-2734.
[30] Liao HH,Zhu JX,Feng H,et al. Corrigendum "myricetin possesses potential protective effects on diabetic cardiomyopathy through inhibiting IκBα/NFκB and enhancing Nrf2/HO-1"[J]. Oxid Med Cell Longev,2021,2021:9812928.
[31] Guo Y,Shen L. Overexpression of NRF2 is correlated with prognoses of patients with malignancies:a meta-analysis[J]. Thorac Cancer,2017,8(6):558-564.
[32] Diao X,Shen E,Wang X,et al. Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice[J]. Mol Med Rep,2011,4(4):633-640.
[33] Nandi SS,Mishra PK. Targeting miRNA for therapy of juvenile and adult diabetic cardiomyopathy[J]. Adv Exp Med Biol,2018,1056:47-59.
[34] Mittal A,Garg R,Bahl A,et al. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy[J]. Front Cardiovasc Med,2021,8:725532.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(9):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(9):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(9):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]向杰 刘明鑫 黄从新.STAT3信号通路在心房颤动中的机制研究[J].心血管病学进展,2020,(1):22.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.007]
XIANG JieLIU MingxinHUANG Congxin.Mechanism of STAT3 Signaling Pathway in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(9):22.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.007]
[5]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(9):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[6]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(9):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(9):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(9):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[9]乔晓博,罗倩文,赵鹏,等.橘皮素通过抑制ERK1/2信号通路干预小鼠腹主动脉瘤的进展[J].心血管病学进展,2021,(6):572.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.022]
via Inhibiting ERK / Signaling Pathway.Tangeretin Attenuate s Mouse Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2021,(9):572.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.022]
[10]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(9):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]